Do you want to publish a course? Click here

Discovery of gamma-ray emission from the supernova remnant Kes 17 with Fermi Large Area Telescope

379   0   0.0 ( 0 )
 Added by Chung Yue Hui David
 Publication date 2011
  fields Physics
and research's language is English
 Authors J. H. K. Wu




Ask ChatGPT about the research

We report the discovery of GeV emission at the position of supernova remnant Kes 17 by using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 17 can be clearly detected with a significance of ~12 sigma in the 1 - 20 GeV range. Moreover, a number of gamma-ray sources were detected in its vicinity. The gamma-ray spectrum of Kes 17 can be well described by a simple power-law with a photon index of ~ 2.4. Together with the multi-wavelength evidence for its interactions with the nearby molecular cloud, the gamma-ray detection suggests that Kes 17 is a candidate acceleration site for cosmic-rays.



rate research

Read More

249 - Qiang Yuan 2017
The remnant of supernova explosion is widely believed to be the acceleration site of high-energy cosmic ray particles. The acceleration timescale is, however, typically very long. Here we report the detection of a variable $gamma$-ray source with the Fermi Large Area Telescope, which is positionally and temporally consistent with a peculiar supernova, iPTF14hls. A quasi-stellar object SDSS J092054.04+504251.5, which is probably a blazar according to the infrared data, is found in the error circle of the $gamma$-ray source. More data about the $gamma$-ray source and SDSS J092054.04+504251.5 are needed to confirm their association. On the other hand, if the association between the $gamma$-ray source and the supernova is confirmed, this would be the first time to detect high-energy $gamma$-ray emission from a supernova, suggesting very fast particle acceleration by supernova explosions.
115 - Qing-Wen Tang 2017
We report the discovery of gamma-ray detection from the Large Magellanic Cloud (LMC) B0443-6657 using the Large Area Telescope (LAT) on board the textit{Fermi Gamma-ray Space Telescope}. LMC B0443-6657 is a flat spectrum radio source, possibly associated with a supernova remnant in the Large Magellanic Cloud (LMC N4). Employing the LAT data of 8 years, our results show a significant excess ($>9.4sigma$) of gamma-ray in the range of 0.2--100,GeV above the gamma-ray background. A power-law function is found to be adequate to describe the $0.2-100$ GeV $gamma$-ray spectrum, which yields a photon flux of $3.27pm0.53 mathrm{photon ,cm}^2 mathrm{s}^{-1}$ with a photon index of $2.35pm0.11$, corresponding to an isotropic gamma-ray luminosity of $5.3times10^{40} mathrm{erg ,s}^{-1}$. The hadronic model predicts a low X-ray and TeV flux while the leptonic model predicts an observable flux in these two energy bands. The follow-up observations of the LMC B0443-6657 in X-ray or TeV band would distinguish the radiation models of gamma-rays from this region.
We present an analysis of the gamma-ray measurements by the Large Area Telescope onboard the textit{Fermi Gamma-ray Space Telescope} in the region of the supernova remnant~(SNR) Monoceros Loop~(G205.5$+$0.5). The brightest gamma-ray peak is spatially correlated with the Rosette Nebula, which is a molecular cloud complex adjacent to the southeast edge of the SNR. After subtraction of this emission by spatial modeling, the gamma-ray emission from the SNR emerges, which is extended and fit by a Gaussian spatial template. The gamma-ray spectra are significantly better reproduced by a curved shape than a simple power law. The luminosities between 0.2--300~GeV are $sim$~$4 times 10^{34}$~erg~s$^{-1}$ for the SNR and $sim$~$3 times 10^{34}$~erg~s$^{-1}$ for the Rosette Nebula, respectively. We argue that the gamma rays likely originate from the interactions of particles accelerated in the SNR. The decay of neutral pions produced in nucleon-nucleon interactions of accelerated hadrons with interstellar gas provides a reasonable explanation for the gamma-ray emission of both the Rosette Nebula and the Monoceros SNR.
153 - V. A. Acciari , E. Aliu , T. Arlen 2011
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at $00^{rm h} 25^{rm m} 27.0^{rm s}, +64^{circ} 10^{prime} 50^{primeprime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42;textrm{TeV})^{-Gamma}$ with $Gamma = 1.95 pm 0.51_{stat} pm 0.30_{sys}$ and $C = (1.55 pm 0.43_{stat} pm 0.47_{sys}) times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $sim 80 mu$G, which may be interpreted as evidence for magnetic field amplification.
207 - A. Abdo 2010
We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension detected at a significance level of 12.2$sigma$ above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation - Cassiopeia A. The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as $W_{mathrm{CR}} approx (1-4) times 10^{49}$ erg thanks to the well-known density in the remnant assuming that the observed gamma-ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B $gt 0.1$ mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا