Do you want to publish a course? Click here

On the phenomenology of a two-Higgs-doublet model with maximal CP symmetry at the LHC - synopsis and addendum

143   0   0.0 ( 0 )
 Added by Markos Maniatis
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Predictions for LHC physics are given for a two-Higgs-doublet model having four generalized CP symmetries. In this maximally-CP-symmetric model (MCPM) the first fermion family is, at tree level, uncoupled to the Higgs fields and thus massless. The second and third fermion families have a very symmetric coupling to the Higgs fields. But through the electroweak symmetry breaking a large mass hierarchy is generated between these fermion families. Thus, the fermion mass spectrum of the model presents a rough approximation to what is observed in Nature. In the MCPM the couplings of the Higgs bosons to the fermions are completely fixed. This allows us to present clear predictions for the production at the LHC and for the decays of the physical Higgs bosons. As salient feature we find rather large cross sections for Higgs-boson production via Drell-Yan type processes. In this paper we present a short outline of the model and extend a former study by the predictions at LHC for a center-of-mass energy of 7 TeV.



rate research

Read More

A Monte Carlo event generator is constructed for a two-Higgs-doublet model with maximal CP symmetry, the MCPM. The model contains five physical Higgs bosons; the $rho$, behaving similarly to the standard-model Higgs boson, two extra neutral bosons $h$ and $h$, and a charged pair $H^pm$. The special feature of the MCPM is that, concerning the Yukawa couplings, the bosons $h$, $h$ and $H^pm$ couple directly only to the second generation fermions but with strengths given by the third-generation-fermion masses. Our event generator allows the simulation of the Drell-Yan-type production processes of $h$, $h$ and $H^pm$ in proton-proton collisions at LHC energies. Also the subsequent leptonic decays of these bosons into the $mu^+ mu^-$, $mu^+ u_mu$ and $mu^- bar u_mu$ channels are studied as well as the dominant background processes. We estimate the integrated luminosities needed in $p p$ collisions at center-of-mass energies of 8 TeV and 14 TeV for significant observations of the Higgs bosons $h$, $h$ and $H^pm$ in these muonic channels.
193 - Per Osland 2008
We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrizations. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding Standard Model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.
We update the constraints on Two-Higgs-Doublet Models of Type I and II discussed in arXiv:1405.3584 using the latest LHC measurements of the ~125.5 GeV Higgs signal as of Summer 2014. We provide explicit comparisons of the results before and after the Summer 2014 ATLAS and CMS updates. Overall, the changes with respect to arXiv:1405.3584 are rather small; to a large extent this is due to the fact that both the ATLAS and the CMS updates of the $gammagamma$ decay mode moved closer to SM expectations.
We propose a two Higgs doublet Type III seesaw model with $mu$-$tau$ flavor symmetry. We add an additional SU(2) Higgs doublet and three SU(2) fermion triplets in our model. The presence of two Higgs doublets allows for natural explanation of small neutrino masses with triplet fermions in the 100 GeV mass range, without fine tuning of the Yukawa couplings to extremely small values. The triplet fermions couple to the gauge bosons and can be thus produced at the LHC. We study in detail the effective cross-sections for the production and subsequent decays of these heavy exotic fermions. We show for the first time that the $mu$-$tau$ flavor symmetry in the low energy neutrino mass matrix results in mixing matrices for the neutral and charged heavy fermions that are not unity and which carry the flavor symmetry pattern. This flavor structure can be observed in the decays of the heavy fermions at LHC. The large Yukawa couplings in our model result in the decay of the heavy fermions into lighter leptons and Higgs with a decay rate which is about $10^{11}$ times larger than what is expected for the one Higgs Type III seesaw model with 100 GeV triplet fermions. The smallness of neutrino masses constrains the neutral Higgs mixing angle $sinalpha$ in our model in such a way that the heavy fermions decay into the lighter neutral CP even Higgs $h^0$, CP odd Higgs $A^0$ and the charged Higgs $H^pm$, but almost never to the heavier neutral CP even Higgs $H^0$. The small value for $sinalpha$ also results in a very long lifetime for $h^0$. This displaced decay vertex should be visible at LHC. We provide an exhaustive list of collider signature channels for our model and identify those that have very large effective cross-sections at LHC and almost no standard model background.
The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا