Do you want to publish a course? Click here

Periodically-driven cold atoms: the role of the phase

204   0   0.0 ( 0 )
 Added by Kazue Kudo
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Numerous theoretical and experimental studies have investigated the dynamics of cold atoms subjected to time periodic fields. Novel effects dependent on the amplitude and frequency of the driving field, such as Coherent Destruction of Tunneling have been identified and observed. However, in the last year or so, three distinct types of experiments have demonstrated for the first time, interesting behaviour associated with the driving phase: i.e. for systems experiencing a driving field of general form $V(x)sin (omega t + phi)$, different types of large scale oscillations and directed motion were observed. We investigate and explain the phenomenon of Super-Bloch Oscillations (SBOs) in relation to the other experiments and address the role of initial phase in general. We analyse and compare the role of $phi$ in systems with homogeneous forces ($V(x)= const$), such as cold atoms in shaken or amplitude-modulated optical lattices, as well as non-homogeneous forces ($V(x) eq const$), such as the sloshing of atoms in driven traps, and clarify the physical origin of the different $phi$-dependent effects.



rate research

Read More

Transporting cold atoms between distant sections of a vacuum system is a central ingredient in many quantum simulation experiments, in particular in setups, where a large optical access and precise control over magnetic fields is needed. In this work, we demonstrate optical transport of cold cesium atoms over a total transfer distance of about $43,$cm in less than $30,$ms. The high speed is facilitated by a moving lattice, which is generated via the interference of a Bessel and a Gaussian laser beam. We transport about $3times 10^6$ atoms at a temperature of a few $mu$K with a transport efficiency of about $75%$. We provide a detailed study of the transport efficiency for different accelerations and lattice depths and find that the transport efficiency is mainly limited by the potential depth along the direction of gravity. To highlight the suitability of the optical-transport setup for quantum simulation experiments, we demonstrate the generation of a pure Bose-Einstein condensate with about $2times 10^4$ atoms. We find a robust final atom number within $2%$ over a duration of $2.5,$h with a standard deviation of $<5%$ between individual experimental realizations.
We investigate multi-photon interband excitation processes in an optical lattice that is driven periodically in time by a modulation of the lattice depth. Assuming the system to be prepared in the lowest band, we compute the excitation spectrum numerically. Moreover, we estimate the effective coupling parameters for resonant interband excitation processes analytically, employing degenerate perturbation theory in Floquet space. We find that below a threshold driving strength, interband excitations are suppressed exponentially with respect to the inverse driving frequency. For sufficiently low frequencies, this leads to a rather sudden onset of interband heating, once the driving strength reaches the threshold. We argue that this behavior is rather generic and should also be found in lattice systems that are driven by other forms of periodic forcing. Our results are relevant for Floquet engineering, where a lattice system is driven periodically in time in order to endow it with novel properties like the emergence of a strong artificial magnetic field or a topological band structure. In this context, interband excitation processes correspond to detrimental heating.
Periodically-driven quantum systems are currently explored in view of realizing novel many-body phases of matter. This approach is particularly promising in gases of ultracold atoms, where sophisticated shaking protocols can be realized and inter-particle interactions are well controlled. The combination of interactions and time-periodic driving, however, often leads to uncontrollable heating and instabilities, potentially preventing practical applications of Floquet-engineering in large many-body quantum systems. In this work, we experimentally identify the existence of parametric instabilities in weakly-interacting Bose-Einstein condensates in strongly-driven optical lattices through momentum-resolved measurements. Parametric instabilities can trigger the destruction of weakly-interacting Bose-Einstein condensates through the rapid growth of collective excitations, in particular in systems with weak harmonic confinement transverse to the lattice axis.
We investigate a Bose Einstein condensate held in a 1D optical lattice whose phase undergoes a fast oscillation using a statistical analysis. The averaged potential experienced by the atoms boils down to a periodic potential having the same spatial period but with a renormalized depth. However, the atomic dynamics also contains a emph{micromotion} whose main features are revealed by a Kolmorogov-Smirnov analysis of the experimental momentum distributions. We furthermore discuss the impact of the micromotion on a quench process corresponding to a proper sudden change of the driving amplitude which reverses the curvature of the averaged potential.
Using a numerical implementation of the truncated Wigner approximation, we simulate the experiment reported by Ramanathan et al. in Phys. Rev. Lett. 106, 130401 (2011), in which a Bose-Einstein condensate is created in a toroidal trap and set into rotation via a phase imprinting technique. A potential barrier is then placed in the trap to study the decay of the superflow. We find that the current decays via thermally activated phase slips, which can also be visualized as vortices crossing the barrier region in the radial direction. Adopting the notion of critical velocity used in the experiment, we determine it to be lower than the local speed of sound at the barrier, in contradiction to the predictions of the zero-temperature Gross-Pitaevskii equation. We map out the superfluid decay rate and critical velocity as a function of temperature and observe a strong dependence. Thermal fluctuations offer a partial explanation of the experimentally observed reduction of the critical velocity from the phonon velocity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا