No Arabic abstract
We investigate multi-photon interband excitation processes in an optical lattice that is driven periodically in time by a modulation of the lattice depth. Assuming the system to be prepared in the lowest band, we compute the excitation spectrum numerically. Moreover, we estimate the effective coupling parameters for resonant interband excitation processes analytically, employing degenerate perturbation theory in Floquet space. We find that below a threshold driving strength, interband excitations are suppressed exponentially with respect to the inverse driving frequency. For sufficiently low frequencies, this leads to a rather sudden onset of interband heating, once the driving strength reaches the threshold. We argue that this behavior is rather generic and should also be found in lattice systems that are driven by other forms of periodic forcing. Our results are relevant for Floquet engineering, where a lattice system is driven periodically in time in order to endow it with novel properties like the emergence of a strong artificial magnetic field or a topological band structure. In this context, interband excitation processes correspond to detrimental heating.
Periodically-driven quantum systems are currently explored in view of realizing novel many-body phases of matter. This approach is particularly promising in gases of ultracold atoms, where sophisticated shaking protocols can be realized and inter-particle interactions are well controlled. The combination of interactions and time-periodic driving, however, often leads to uncontrollable heating and instabilities, potentially preventing practical applications of Floquet-engineering in large many-body quantum systems. In this work, we experimentally identify the existence of parametric instabilities in weakly-interacting Bose-Einstein condensates in strongly-driven optical lattices through momentum-resolved measurements. Parametric instabilities can trigger the destruction of weakly-interacting Bose-Einstein condensates through the rapid growth of collective excitations, in particular in systems with weak harmonic confinement transverse to the lattice axis.
We investigate a Bose Einstein condensate held in a 1D optical lattice whose phase undergoes a fast oscillation using a statistical analysis. The averaged potential experienced by the atoms boils down to a periodic potential having the same spatial period but with a renormalized depth. However, the atomic dynamics also contains a emph{micromotion} whose main features are revealed by a Kolmorogov-Smirnov analysis of the experimental momentum distributions. We furthermore discuss the impact of the micromotion on a quench process corresponding to a proper sudden change of the driving amplitude which reverses the curvature of the averaged potential.
Experiments on periodically driven quantum systems have effectively realized quasi-Hamiltonians, in the sense of Floquet theory, that are otherwise inaccessible in static condensed matter systems. Although the Floquet quasi-Hamiltonians are time-independent, however, these continuously driven systems can still suffer from heating due to a secular growth in the expectation value of the time-dependent physical Hamiltonian. Here we use an exact space-time mapping to construct a class of many-body systems with rapid periodic driving which we nonetheless prove to be completely free of heating, by mapping them exactly onto time-independent systems. The absence of heating despite the periodic driving occurs in these cases of harmonically trapped dilute Bose gas because the driving is a certain periodic but anharmonic modulation of the gass two-body contact interaction, at a particular frequency. Although we prove that the absence of heating is exact within full quantum many-body theory, we then use mean-field theory to simulate Floquet heating spectroscopy and compute the heating rate when the driving frequency is varied away from the critical value for zero heating. In both weakly and strongly non-linear regimes, the heating rate as a function of driving frequency appears to show a number of Fano resonances, suggesting that the exactly proven absence of heating at the critical frequency may be explained in terms of destructive interferences between excitation modes.
Experimental realizations of topological quantum systems and detections of topological invariants in ultracold atomic systems have been a greatly attractive topic. In this work, we propose a scheme to realize topologically different phases in a bichromatic optical lattice subjected to a periodically driven tilt harmonic oscillation, which can be effectively described by a superlattice model with tunable long-range hopping processes. By tuning the ratio of nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping amplitudes, the system undergoes a topological phase transition accompanied by the change of topological numbers of the lowest band from -1 to 2. Using a slowly time-periodic modulation, the system emerges distinct quantized topological pumped charges (TPCs) of atoms in the filled band for different topological phases. Our scheme is realizable in current cold atomic technique.
Time periodic forcing in the form of coherent radiation is a standard tool for the coherent manipulation of small quantum systems like single atoms. In the last years, periodic driving has more and more also been considered as a means for the coherent control of many-body systems. In particular, experiments with ultracold quantum gases in optical lattices subjected to periodic driving in the lower kilohertz regime have attracted a lot of attention. Milestones include the observation of dynamic localization, the dynamic control of the quantum phase transition between a bosonic superfluid and a Mott insulator, as well as the dynamic creation of strong artificial magnetic fields and topological band structures. This article reviews these recent experiments and their theoretical description. Moreover, fundamental properties of periodically driven many-body systems are discussed within the framework of Floquet theory, including heating, relaxation dynamics, anomalous topological edge states, and the response to slow parameter variations.