We investigate a Bose Einstein condensate held in a 1D optical lattice whose phase undergoes a fast oscillation using a statistical analysis. The averaged potential experienced by the atoms boils down to a periodic potential having the same spatial period but with a renormalized depth. However, the atomic dynamics also contains a emph{micromotion} whose main features are revealed by a Kolmorogov-Smirnov analysis of the experimental momentum distributions. We furthermore discuss the impact of the micromotion on a quench process corresponding to a proper sudden change of the driving amplitude which reverses the curvature of the averaged potential.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven optical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
We study the quantum dynamics of Bose-Einstein condensates when the scattering length is modulated periodically or quasi-periodically in time within the Bogoliubov framework. For the periodically driven case, we consider two protocols where the modulation is a square-wave or a sine-wave. In both protocols for each fixed momentum, there are heating and non-heating phases, and a phase boundary between them. The two phases are distinguished by whether the number of excited particles grows exponentially or not. For the quasi-periodically driven case, we again consider two protocols: the square-wave quasi-periodicity, where the excitations are generated for almost all parameters as an analog of the Fibonacci-type quasi-crystal; and the sine-wave quasi-periodicity, where there is a finite measure parameter regime for the non-heating phase. We also plot the analogs of the Hofstadter butterfly for both protocols.
Vortex lattices in rapidly rotating Bose--Einstein condensates are systems of topological excitations that arrange themselves into periodic patterns. Here we show how phase-imprinting techniques can be used to create a controllable number of defects in these lattices and examine the resulting dynamics. Even though we describe our system using the mean-field Gross--Pitaevskii theory, the full range of many particle effects among the vortices can be studied. In particular we find the existence of localized vacancies that are quasi-stable over long periods of time, and characterize the effects on the background lattice through use of the orientational correlation function, and Delaunay triangulation.
In this paper, we show that for sufficiently strong atomic interactions, there exist analytical solutions of current-carrying nonlinear Bloch states at the Brillouin zone edge to the model of spin-orbit-coupled Bose-Einstein condensates (BECs) with symmetric spin interaction loaded into optical lattices. These simple but generic exact solutions provide an analytical demonstration of some intriguing properties which have neither an analog in the regular BEC lattice systems nor in the uniform spin-orbit-coupled BEC systems. It is an analytical example for understanding the superfluid and other related properties of the spin-orbit-coupled BEC lattice systems.
Periodically-driven quantum systems are currently explored in view of realizing novel many-body phases of matter. This approach is particularly promising in gases of ultracold atoms, where sophisticated shaking protocols can be realized and inter-particle interactions are well controlled. The combination of interactions and time-periodic driving, however, often leads to uncontrollable heating and instabilities, potentially preventing practical applications of Floquet-engineering in large many-body quantum systems. In this work, we experimentally identify the existence of parametric instabilities in weakly-interacting Bose-Einstein condensates in strongly-driven optical lattices through momentum-resolved measurements. Parametric instabilities can trigger the destruction of weakly-interacting Bose-Einstein condensates through the rapid growth of collective excitations, in particular in systems with weak harmonic confinement transverse to the lattice axis.
M. Arnal
,G. Chatelain
,C. Cabrera-Gutierrez
.
(2019)
.
"Beyond effective Hamiltonians: micromotion of Bose Einstein condensates in periodically driven optical lattices"
.
David Guery-Odelin
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا