Do you want to publish a course? Click here

Lifetime enhanced transport in silicon due to spin and valley blockade

111   0   0.0 ( 0 )
 Added by Gabriel Lansbergen
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the observation of Lifetime Enhanced Transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition between an excited state and any of the lower energy states due perpendicular valley (and spin) configurations, offering an additional current path. By employing a detailed temperature dependence study in combination with a rate equation model, we estimate the lifetime of this particular state to exceed 48 ns. The two-electron spin-valley configurations of all relevant confined quantum states in our device were obtained by a large-scale atomistic tight-binding simulation. The LET acts as a signature of the complicated valley physics in silicon; a feature that becomes increasingly important in silicon quantum devices.

rate research

Read More

121 - H. W. Liu , T. Fujisawa , Y. Ono 2008
We present measurements of resonant tunneling through discrete energy levels of a silicon double quantum dot formed in a thin silicon-on-insulator layer. In the absence of piezoelectric phonon coupling, spontaneous phonon emission with deformation-potential coupling accounts for inelastic tunneling through the ground states of the two dots. Such transport measurements enable us to observe a Pauli spin blockade due to effective two-electron spin-triplet correlations, evident in a distinct bias-polarity dependence of resonant tunneling through the ground states. The blockade is lifted by the excited-state resonance by virtue of efficient phonon emission between the ground states. Our experiment demonstrates considerable potential for investigating silicon-based spin dynamics and spin-based quantum information processing.
Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition metal dichalcogenide (TMDC) with broken inversion symmetry possesses two degenerate yet inequivalent valleys, offering unique opportunities for valley control through helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest, (~ 0.2 meV/T). Here we show greatly enhanced valley spitting in monolayer WSe2, utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magneto-reflectance measurements. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing MEF of a magnetic insulator can induce magnetic order, and valley and spin polarization in TMDCs, which may enable valleytronic and quantum computing applications.
146 - C. H. Yang , A. Rossi , R. Ruskov 2013
Although silicon is a promising material for quantum computation, the degeneracy of the conduction band minima (valleys) must be lifted with a splitting sufficient to ensure formation of well-defined and long-lived spin qubits. Here we demonstrate that valley separation can be accurately tuned via electrostatic gate control in a metal-oxide-semiconductor quantum dot, providing splittings spanning 0.3 - 0.8 meV. The splitting varies linearly with applied electric field, with a ratio in agreement with atomistic tight-binding predictions. We demonstrate single-shot spin readout and measure the spin relaxation for different valley configurations and dot occupancies, finding one-electron lifetimes exceeding 2 seconds. Spin relaxation occurs via phonon emission due to spin-orbit coupling between the valley states, a process not previously anticipated for silicon quantum dots. An analytical theory describes the magnetic field dependence of the relaxation rate, including the presence of a dramatic rate enhancement (or hot-spot) when Zeeman and valley splittings coincide.
We present a detailed experimental and theoretical analysis of the spin dynamics of two-dimensional electron gases (2DEGs) in a series of n-doped GaAs/AlGaAs quantum wells. Picosecond-resolution polarized pump-probe reflection techniques were applied in order to study in detail the temperature-, concentration- and quantum-well-width- dependencies of the spin relaxation rate of a small photoexcited electron population. A rapid enhancement of the spin life-time with temperature up to a maximum near the Fermi temperature of the 2DEG was demonstrated experimentally. These observations are consistent with the Dyakonov-Perel spin relaxation mechanism controlled by electron-electron collisions. The experimental results and theoretical predictions for the spin relaxation times are in good quantitative agreement.
151 - J. Yoneda , W. Huang , M. Feng 2020
A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit. Such overheads could be reduced by coherently transporting qubits across the chip, allowing connectivity beyond immediate neighbours. Here we demonstrate high-fidelity coherent transport of an electron spin qubit between quantum dots in isotopically-enriched silicon. We observe qubit precession in the inter-site tunnelling regime and assess the impact of qubit transport using Ramsey interferometry and quantum state tomography techniques. We report a polarization transfer fidelity of 99.97% and an average coherent transfer fidelity of 99.4%. Our results provide key elements for high-fidelity, on-chip quantum information distribution, as long envisaged, reinforcing the scaling prospects of silicon-based spin qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا