No Arabic abstract
The mass-loss rate of donor stars in cataclysmic variables (CVs) is of paramount importance in the evolution of short-period CVs. Observed donors are oversized in comparison with those of isolated single stars of the same mass, which is thought to be a consequence of the mass loss. Using the empirical mass-radius relation of CVs and the homologous approximation for changes in effective temperature T_2, orbital period P, and luminosity of the donor with the stellar radius, we find the semi-empirical mass-loss rate M2_dot of CVs as a function of P. The derived M2_dot is at ~10^(-9.5)-10^(-10) Msun/yr and depends weakly on P when P > 90 min, while it declines very rapidly towards the minimum period when P < 90 min, emulating the P-T_2 relation. Due to strong deviation from thermal equilibrium caused by the mass loss, the semi-empirical M2_dot is significantly different from, and has a less-pronounced turnaround behavior with P than suggested by previous numerical models. The semi-empirical P-M2_dot relation is consistent with the angular momentum loss due to gravitational wave emission, and strongly suggests that CV secondaries with 0.075 Msun < M_2 < 0.2 Msun are less than 2 Gyrs old. When applied to selected eclipsing CVs, our semi-empirical mass-loss rates are in good agreement with the accretion rates derived from the effective temperatures T_1 of white dwarfs, suggesting that M2_dot can be used to reliably infer T_2 from T_1. Based on the semi-empirical M2_dot, SDSS 1501 and 1433 systems that were previously identified as post-bounce CVs have yet to reach the minimal period.
We aim to study the main properties of a volume-limited unbiased sample of well-characterized semi-regular variables (SRs) in order to clarify important issues, such as the formation of axially symmetric planetary nebulae (PNe) from spherical circumstellar envelopes (CSEs), which takes place during the mass-loss process along the AGB phase. We present new high-S/N IRAM 30m observations of the 12CO J=2-1, J=1-0, and 13CO J=1-0 lines, in a volume-limited sample of SRs. We analyzed the data by characterizing the main properties of the CSEs. The 12CO J=2-1 data were used to study the profiles, while the 12CO J=1-0 data were used to estimate mass-loss rates for the complete sample. We have classified the sources into four groups according to the different profiles and final gas expansion velocities. Type 1 and 2 profiles are broad and narrow symmetric lines, respectively. Type 3 profiles on the contrary are strange profiles with very pronounced asymmetries. Finally, type 4 profiles are those showing two different components: a narrow line profile superimposed on a broad pedestal component. Interestingly, we report a moderate correlation between mass-loss rates and 12CO J=1-0/J=2-1 line intensity ratios for O-rich SRs, suggesting a different behaviour between C- and O-rich SRs. Using SHAPE+shapemol, we find a unified simple model based on an oblate spheroid placed in different orientations that may explain all the 12CO profiles in the sample, indicating that the gas expansion is in general predominantly equatorial. Moreover, in order to explain the type 4 profiles, we define an extra component which may somehow be a biconical structure or similar. Type 1 and 2 profiles, curiously, may also be explained by standard spherically symmetric envelopes. We conclude that most circumstellar shells around SRs show axial, strongly nonspherical symmetry.
We present high-speed, three-colour photometry of the eclipsing cataclysmic variables CTCV 1300, CTCV 2354 and SDSS 1152. All three systems are below the observed period gap for cataclysmic variables. For each system we determine the system parameters by fitting a parameterised model to the observed eclipse light curve by chi-squared minimisation. We also present an updated analysis of all other eclipsing systems previously analysed by our group. New donor masses are generally between 1 and 2 sigma of those originally published, with the exception of SDSS 1502 and DV UMa. We note that the donor mass of SDSS 1501 has been revised upwards by 0.024Msun. This system was previously identified as having evolved passed the minimum orbital period for cataclysmic variables, but the new mass determination suggests otherwise. Our new analysis confirms that SDSS 1035 and SDSS 1433 have evolved past the period minimum for cataclysmic variables, corroborating our earlier studies. We find that the radii of donor stars are oversized when compared to theoretical models, by approximately 10 percent. We show that this can be explained by invoking either enhanced angular momentum loss, or by taking into account the effects of star spots. We are unable to favour one cause over the other, as we lack enough precise mass determinations for systems with orbital periods between 100 and 130 minutes, where evolutionary tracks begin to diverge significantly. We also find a strong tendency towards high white dwarf masses within our sample, and no evidence for any He-core white dwarfs. The dominance of high mass white dwarfs implies that erosion of the white dwarf during the nova outburst must be negligible, or that not all of the mass accreted is ejected during nova cycles, resulting in the white dwarf growing in mass. (Abridged)
Binary evolution theory predicts that accreting white dwarfs with sub-stellar companions dominate the Galactic population of cataclysmic variables (CVs). In order to test these predictions, it is necessary to identify these systems, which may be difficult if the signatures of accretion become too weak to be detected. The only chance to identify such dead CVs is by exploiting their close binary nature. We have therefore searched the Sloan Digital Sky Survey (SDSS) Stripe 82 area for apparently isolated white dwarfs that undergo eclipses by a dark companion. We found no such eclipses in either the SDSS or Palomar Transient Factory data sets among our sample of 2264 photometrically selected white dwarf candidates within Stripe 82. This null result allows us to set a firm upper limit on the space density, $rho_0$, of dead CVs. In order to determine this limit, we have used Monte-Carlo simulations to fold our selection criteria through a simple model of the Galactic CV distribution. Assuming a $T_{WD}=7,500$ K, the resulting 2$sigma$ limit on the space density of dead CVs is $rho_0 lesssim 2 times 10^{-5}$ pc$^{-3}$, where $T_{WD}$ is the typical effective temperature of the white dwarf in such systems.
Aims: We report the discovery that Mira variables with and without absorption lines of the element technetium (Tc) occupy two different regions in a diagram of near- to mid-infrared colour versus pulsation period. Tc is an indicator of a recent or ongoing mixing event called the third dredge-up (3DUP), and the near- to mid-IR colour, such as the (K-[22]) colour where [22] is the the 22 micron band of the WISE space observatory, is an indicator of the dust mass-loss rate of a star. Methods: We collected data from the literature about the Tc content, pulsation period, and near- and mid-infrared magnitudes of more than 190 variable stars on the asymptotic giant branch (AGB) to which Miras belong. The sample is naturally biased towards optical AGB stars, which have low to intermediate (dust) mass-loss rates. Results: We show that a clear relation between dust mass-loss rate and pulsation period exists if a distinction is made between Tc-poor and Tc-rich Miras. Surprisingly, at a given period, Tc-poor Miras are redder in (K-[22]) than are Tc-rich Miras; i.e. they have higher mass-loss rates than the Tc-rich Miras. A few stars deviate from this trend; physical explanations are given for these exceptions, such as binarity or high mass. Conclusions: We put forward two hypotheses to explain this dichotomy and conclude that the two sequences formed by Tc-poor and Tc-rich Miras are probably due to the different masses of the two groups. The pulsation period has a strong correlation with the dust-mass loss rate, indicating that the pulsations are indeed triggering a dust-driven wind. The location in the (K-[22]) vs. period diagram can be used to distinguish between pre- and post-3DUP Miras, which we apply to a sample of Galactic bulge AGB stars. We find that 3DUP is probably not common in AGB stars in the inner bulge.
Our goal is to assess Gaias performance on the period recovery of short period (p < 2 hours) and small amplitude variability. To reach this goal first we collected the properties of variable stars that fit the requirements described above. Then we built a database of synthetic light-curves with short period and low amplitude variability with time sampling that follows the Gaia nominal scanning law and with noise level corresponding to the expected photometric precision of Gaia. Finally we performed period search on the synthetic light-curves to obtain period recovery statistics. This work extends our previous period recovery studies to short period variable stars which have non-stationary Fourier spectra.