Do you want to publish a course? Click here

From One Electron to One Hole: Quasiparticle Counting in Graphene Quantum Dots Determined by Electrochemical and Plasma Etching

142   0   0.0 ( 0 )
 Added by Leonid Ponomarenko
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene is considered to be a promising material for future electronics. The envisaged transistor applications often rely on precision cutting of graphene sheets with nanometer accuracy. In this letter we demonstrate graphene-based quantum dots created by using atomic force microscopy (AFM) with tip-assisted electrochemical etching. This lithography technique provides resolution of about 20 nm, which can probably be further improved by employing sharper tips and better humidity control. The behavior of our smallest dots in magnetic field has allowed us to identify the charge neutrality point and distinguish the states with one electron, no charge and one hole left inside the quantum dot.



rate research

Read More

We use time-resolved charge detection techniques to investigate single-electron tunneling in semiconductor quantum dots. The ability to detect individual charges in real-time makes it possible to count electrons one-by-one as they pass through the structure. The setup can thus be used as a high-precision current meter for measuring ultra-low currents, with resolution several orders of magnitude better than that of conventional current meters. In addition to measuring the average current, the counting procedure also makes it possible to investigate correlations between charge carriers. In quantum dots, we find that the strong Coulomb interaction makes electrons try to avoid each other. This leads to electron anti-bunching, giving stronger correlations and reduced noise compared to a current carried by statistically independent electrons. The charge detector is implemented by monitoring changes in conductance in a near-by capacitively coupled quantum point contact. We find that the quantum point contact not only serves as a detector but also causes a back-action onto the measured device. Electron scattering in the quantum point contact leads to emission of microwave radiation. The radiation is found to induce an electronic transition between two quantum dots, similar to the absorption of light in real atoms and molecules. Using a charge detector to probe the electron transitions, we can relate a single-electron tunneling event to the absorption of a single photon. Moreover, since the energy levels of the double quantum dot can be tuned by external gate voltages, we use the device as a frequency-selective single-photon detector operating at microwave energies.
We have realized a quantum optics like Hanbury Brown and Twiss (HBT) experiment by partitioning, on an electronic beam-splitter, single elementary electronic excitations produced one by one by an on-demand emitter. We show that the measurement of the output currents correlations in the HBT geometry provides a direct counting, at the single charge level, of the elementary excitations (electron/hole pairs) generated by the emitter at each cycle. We observe the antibunching of low energy excitations emitted by the source with thermal excitations of the Fermi sea already present in the input leads of the splitter, which suppresses their contribution to the partition noise. This effect is used to probe the energy distribution of the emitted wave-packets.
More than a decade after the discovery of graphene, ballistic transport in nanostructures based on this intriguing material still represents a challenging field of research in two-dimensional electronics. The presence of rough edges in nanostructures based on this material prevents the appearance of truly ballistic electron transport as theo-re-tically predicted and, therefore, not well-developed plateaus of conductance have been revealed to date. In this work we report on a novel implementation of the cryo-etching method, which enabled us to fabricate graphene nanoconstrictions encapsulated between hexagonal boron nitride thin films with unprecedented control of the structure edges. High quality smooth nanometer-rough edges are characterized by atomic force microscopy and a clear correlation between low roughness and the existence of well-developed quantized conductance steps with the concomitant occurrence of ballistic transport is found at low temperature. In par-ti-cu-lar, we come upon exact 2$e^{2}/h$ quantization steps of conductance at zero magnetic field due to size quantization, as it has been theoretically predicted for truly ballistic electron transport through graphene nanoconstrictions.
We investigate the addition spectrum of a graphene quantum dot in the vicinity of the electron-hole crossover as a function of perpendicular magnetic field. Coulomb blockade resonances of the 50 nm wide dot are visible at all gate voltages across the transport gap ranging from hole to electron transport. The magnetic field dependence of more than 50 states displays the unique complex evolution of the diamagnetic spectrum of a graphene dot from the low-field regime to the Landau regime with the n=0 Landau level situated in the center of the transport gap marking the electron-hole crossover. The average peak spacing in the energy region around the crossover decreases with increasing magnetic field. In the vicinity of the charge neutrality point we observe a well resolved and rich excited state spectrum.
We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا