Do you want to publish a course? Click here

Electron counting in quantum dots

127   0   0.0 ( 0 )
 Added by Simon Gustavsson
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use time-resolved charge detection techniques to investigate single-electron tunneling in semiconductor quantum dots. The ability to detect individual charges in real-time makes it possible to count electrons one-by-one as they pass through the structure. The setup can thus be used as a high-precision current meter for measuring ultra-low currents, with resolution several orders of magnitude better than that of conventional current meters. In addition to measuring the average current, the counting procedure also makes it possible to investigate correlations between charge carriers. In quantum dots, we find that the strong Coulomb interaction makes electrons try to avoid each other. This leads to electron anti-bunching, giving stronger correlations and reduced noise compared to a current carried by statistically independent electrons. The charge detector is implemented by monitoring changes in conductance in a near-by capacitively coupled quantum point contact. We find that the quantum point contact not only serves as a detector but also causes a back-action onto the measured device. Electron scattering in the quantum point contact leads to emission of microwave radiation. The radiation is found to induce an electronic transition between two quantum dots, similar to the absorption of light in real atoms and molecules. Using a charge detector to probe the electron transitions, we can relate a single-electron tunneling event to the absorption of a single photon. Moreover, since the energy levels of the double quantum dot can be tuned by external gate voltages, we use the device as a frequency-selective single-photon detector operating at microwave energies.



rate research

Read More

121 - JunYan Luo , HuJun Jiao , Yu Shen 2011
We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.
88 - C. W. Groth , B. Michaelis , 2006
Destructive interference of single-electron tunneling between three quantum dots can trap an electron in a coherent superposition of charge on two of the dots. Coupling to external charges causes decoherence of this superposition, and in the presence of a large bias voltage each decoherence event transfers a certain number of electrons through the device. We calculate the counting statistics of the transferred charges, finding a crossover from sub-Poissonian to super-Poissonian statistics with increasing ratio of tunnel and decoherence rates.
Intratube quantum dots showing particle-in-a-box-like states with level spacings up to 200meV are realized in metallic single-walled carbon nanotubes by means of low dose medium energy Ar irradiation. Fourier transform scanning tunneling spectroscopy compared to results of a Fabry-Perot electron resonator model yields clear signatures for inter- and intra-valley scattering of electrons confined between consecutive irradiation-induced defects (inter-defects distance < 10nm). Effects arising from lifting the degeneracy of the Dirac cones within the first Brillouin zone are also observed.
Interactions between electrons can strongly affect the shape and functionality of multi-electron quantum dots. The resulting charge distributions can be localized, as in the case of Wigner molecules, with consequences for the energy spectrum and tunneling to states outside the dot. The situation is even more complicated for silicon dots, due to the interplay between valley, orbital, and interaction energy scales. Here, we study two-electron wavefunctions in electrostatically confined quantum dots formed in a SiGe/Si/SiGe quantum well at zero magnetic field, using a combination of tight-binding and full-configuration-interaction (FCI) methods, and taking into account atomic-scale disorder at the quantum well interface. We model dots based on recent qubit experiments, which straddle the boundary between strongly interacting and weakly interacting systems, and display a rich and diverse range of behaviors. Our calculations show that strong electron-electron interactions, induced by weak confinement, can significantly suppress the low-lying, singlet-triplet (ST) excitation energy. However, when the valley-orbit interactions caused by interfacial disorder are weak, the ST splitting can approach its noninteracting value, even when the electron-electron interactions are strong and Wigner-molecule behavior is observed. These results have important implications for the rational design and fabrication of quantum dot qubits with predictable properties.
75 - Filippo Troiani 2002
We theoretically investigate correlated electron-hole states in vertically coupled quantum dots. Employing a prototypical double-dot confinement and a configuration-interaction description for the electron-hole states, it is shown that the few-particle ground state undergoes transitions between different quantum states as a function of the interdot distance, resulting in unexpected spatial correlations among carriers and in electron-hole localization. Such transitions provide a direct manifestations of inter- and intradot correlations, which can be directly monitored in experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا