Do you want to publish a course? Click here

Limits on the Orbits and Masses of Moons around Currently-Known Transiting Exoplanets

303   0   0.0 ( 0 )
 Added by Carsten Weidner
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. Current and upcoming space missions may be able to detect moons of transiting extra-solar planets. In this context it is important to understand if exomoons are expected to exist and what their possible properties are. Methods. Using estimates for the stability of exomoon orbits from numerical studies, a list of 87 known transiting exoplanets is tested for the potential to host large exomoons. Results. For 92% of the sample, moons larger than Luna can be excluded on prograde orbits, unless the parent exoplanets internal structure is very different from the gas-giants of the solar system. Only WASP-24b, OGLE2-TR-L9, CoRoT-3b and CoRoT-9b could have moons above 0.4 moplus, which is within the likely detection capabilities of current observational facilities. Additionally, the range of possible orbital radii of exomoons of the known transiting exoplanets, with two exceptions, is below 8 Jupiter-radii and therefore rather small.



rate research

Read More

We report integrated orbital fits for the inner regular moons of Neptune based on the most complete astrometric data set to date, with observations from Earth-based telescopes, Voyager 2, and the Hubble Space Telescope covering 1981-2016. We summarize the results in terms of state vectors, mean orbital elements, and orbital uncertainties. The estimated masses of the two innermost moons, Naiad and Thalassa, are $GM_{Naiad}$= 0.0080 $pm$ 0.0043 $km^3 s^{-2}$ and $GM_{Thalassa}$=0.0236 $pm$ 0.0064 $km^3 s^{-2}$, corresponding to densities of 0.80 $pm$ 0.48 $g cm^{-3}$ and 1.23 $pm$ 0.43 $g cm^{-3}$, respectively. Our analysis shows that Naiad and Thalassa are locked in an unusual type of orbital resonance. The resonant argument 73 $dot{lambda}_{Thalassa}$-69 $dot{lambda}_{Naiad}$-4 $dot{Omega}_{Naiad}$ $approx$ 0 librates around 180 deg with an average amplitude of ~66 deg and a period of ~1.9 years for the nominal set of masses. This is the first fourth-order resonance discovered between the moons of the outer planets. More high precision astrometry is needed to better constrain the masses of Naiad and Thalassa, and consequently, the amplitude and the period of libration. We also report on a 13:11 near-resonance of Hippocamp and Proteus, which may lead to a mass estimate of Proteus provided that there are future observations of Hippocamp. Our fit yielded a value for Neptunes oblateness coefficient of $J_2$=3409.1$pm$2.9 $times 10^{-6}$.
107 - J. Nordhaus , D. S. Spiegel 2012
The ultimate fates of binary companions to stars (including whether the companion survives and the final orbit of the binary) are of interest in light of an increasing number of recently discovered, low-mass companions to white dwarfs (WDs). In this Letter, we study the evolution of a two-body system wherein the orbit adjusts due to structural changes in the primary, dissipation of orbital energy via tides, and mass loss during the giant phases; previous studies have not incorporated changes in the primarys spin. For companions ranging from Jupiters mass to ~0.3 Msun and primaries ranging from 1-3 Msun, we determine the minimum initial semimajor axis required for the companion to avoid engulfment by the primary during post-main-sequence evolution, and highlight the implications for the ultimate survival of the known exoplanets. We present regions in secondary mass and orbital period space where an engulfed companion might be expected to survive the common envelope phase (CEP), and compare with known M dwarf+WD short-period binaries. Finally, we note that engulfed Earth-like planets cannot survive a CEP. Detection of a first-generation terrestrial planet in the white dwarf habitable zone requires scattering from a several-AU orbit to a high-eccentricity orbit (with a periastron of ~Rsun) from which it is damped into a circular orbit via tidal friction, possibly rendering it an uninhabitable, charred ember.
61 - Caleb A. Scharf 2006
Moons of giant planets may represent an alternative to the classical picture of habitable worlds. They may exist within the circumstellar habitable zone of a parent star, and through tidal energy dissipation they may also offer alternative habitable zones, where stellar insolation plays a secondary, or complementary, role. We investigate the potential extent of stable satellite orbits around a set of 74 known extrasolar giant planets located beyond 0.6 AU from their parent stars - where moons should be long-lived with respect to removal by stellar tides. Approximately 60% of these giant planets can sustain satellites or moons in bands up to $sim 0.04$ AU in width. For comparison, the Galiean satellites extend to $sim 0.013$ AU. We investigate the stellar insolation that moons would experience for these exoplanet systems, and the implications for sublimation loss of volatiles. We find that between 15 and 27% of {em all} known exoplanets may be capable of harboring small, icy, moons. In addition, some 22-28% of all known exoplanets could harbor moons within a ``sublimation zone, with insolation temperatures between 273 K and 170 K. A simplified energy balance model is applied to the situation of temperate moons, maintained by a combination of stellar insolation and tidal heat flow. We demonstrate that large moons ($>0.1 $M$_{oplus}$), at orbital radii commensurate with those of the Galilean satellites, could maintain temperate, or habitable, surface conditions during episodes of tidal heat dissipation of the order 1-100 times that currently seen on Io. (Abridged).
The Kepler Mission has discovered thousands of exoplanets and revolutionized our understanding of their population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of exoplanets and planetary systems as a function of their physical properties. However, transit surveys like Kepler are most sensitive to planets with orbital periods much shorter than the orbital periods of Jupiter and Saturn, the most massive planets in our Solar System. To address this deficiency, we perform a fully automated search for long-period exoplanets with only one or two transits in the archival Kepler light curves. When applied to the $sim 40,000$ brightest Sun-like target stars, this search produces 16 long-period exoplanet candidates. Of these candidates, 6 are novel discoveries and 5 are in systems with inner short-period transiting planets. Since our method involves no human intervention, we empirically characterize the detection efficiency of our search. Based on these results, we measure the average occurrence rate of exoplanets smaller than Jupiter with orbital periods in the range 2-25 years to be $2.0pm0.7$ planets per Sun-like star.
160 - Paul A. Dalba 2017
Before an exoplanet transit, atmospheric refraction bends light into the line of sight of an observer. The refracted light forms a stellar mirage, a distorted secondary image of the host star. I model this phenomenon and the resultant out-of-transit flux increase across a comprehensive exoplanetary parameter space. At visible wavelengths, Rayleigh scattering limits the detectability of stellar mirages in most exoplanetary systems with semi-major axes $lesssim$6 AU. A notable exception is almost any planet orbiting a late M or ultra-cool dwarf star at $gtrsim$0.5 AU, where the maximum relative flux increase is greater than 50 parts-per-million. Based partly on previous work, I propose that the importance of refraction in an exoplanet system is governed by two angles: the orbital distance divided by the stellar radius and the total deflection achieved by a ray in the optically thin portion of the atmosphere. Atmospheric lensing events caused by non-transiting exoplanets, which allow for exoplanet detection and atmospheric characterization, are also investigated. I derive the basic formalism to determine the total signal-to-noise ratio of an atmospheric lensing event, with application to Kepler data. It is unlikely that out-of-transit refracted light signals are clearly present in Kepler data due to Rayleigh scattering and the bias toward short-period exoplanets. However, observations at long wavelengths (e.g., the near-infrared) are significantly more likely to detect stellar mirages. Lastly, I discuss the potential for the Transiting Exoplanet Survey Satellite to detect refracted light and consider novel science cases enabled by refracted light spectra from the James Webb Space Telescope.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا