No Arabic abstract
Before an exoplanet transit, atmospheric refraction bends light into the line of sight of an observer. The refracted light forms a stellar mirage, a distorted secondary image of the host star. I model this phenomenon and the resultant out-of-transit flux increase across a comprehensive exoplanetary parameter space. At visible wavelengths, Rayleigh scattering limits the detectability of stellar mirages in most exoplanetary systems with semi-major axes $lesssim$6 AU. A notable exception is almost any planet orbiting a late M or ultra-cool dwarf star at $gtrsim$0.5 AU, where the maximum relative flux increase is greater than 50 parts-per-million. Based partly on previous work, I propose that the importance of refraction in an exoplanet system is governed by two angles: the orbital distance divided by the stellar radius and the total deflection achieved by a ray in the optically thin portion of the atmosphere. Atmospheric lensing events caused by non-transiting exoplanets, which allow for exoplanet detection and atmospheric characterization, are also investigated. I derive the basic formalism to determine the total signal-to-noise ratio of an atmospheric lensing event, with application to Kepler data. It is unlikely that out-of-transit refracted light signals are clearly present in Kepler data due to Rayleigh scattering and the bias toward short-period exoplanets. However, observations at long wavelengths (e.g., the near-infrared) are significantly more likely to detect stellar mirages. Lastly, I discuss the potential for the Transiting Exoplanet Survey Satellite to detect refracted light and consider novel science cases enabled by refracted light spectra from the James Webb Space Telescope.
Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly complementary, no attempt has ever been made to combine them, perhaps due to the different modeling approaches that are typically used in their interpretation. Here we present the first combined analysis of previously-published dayside spectra of the exoplanet HD 209458b obtained at low resolution with HST/WFC3 and Spitzer/IRAC, and at high resolution with VLT/CRIRES. By utilizing a novel retrieval algorithm capable of computing the joint probability distribution of low- and high-resolution spectra, we obtain tight constraints on the chemical composition of the planets atmosphere. In contrast to the WFC3 data, we do not confidently detect H2O at high spectral resolution. The retrieved water abundance from the combined analysis deviates by 1.9 sigma from the expectations for a solar-composition atmosphere in chemical equilibrium. Measured relative molecular abundances of CO and H2O strongly favor an oxygen-rich atmosphere (C/O<1 at 3.5 sigma) for the planet when compared to equilibrium calculations including O rainout. From the abundances of the seven molecular species included in this study we constrain the planet metallicity to 0.1-1.0x the stellar value (1 sigma). This study opens the way to coordinated exoplanet surveys between the flagship ground- and space-based facilities, which ultimately will be crucial for characterizing potentially-habitable planets.
The Kepler Mission has discovered thousands of exoplanets and revolutionized our understanding of their population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of exoplanets and planetary systems as a function of their physical properties. However, transit surveys like Kepler are most sensitive to planets with orbital periods much shorter than the orbital periods of Jupiter and Saturn, the most massive planets in our Solar System. To address this deficiency, we perform a fully automated search for long-period exoplanets with only one or two transits in the archival Kepler light curves. When applied to the $sim 40,000$ brightest Sun-like target stars, this search produces 16 long-period exoplanet candidates. Of these candidates, 6 are novel discoveries and 5 are in systems with inner short-period transiting planets. Since our method involves no human intervention, we empirically characterize the detection efficiency of our search. Based on these results, we measure the average occurrence rate of exoplanets smaller than Jupiter with orbital periods in the range 2-25 years to be $2.0pm0.7$ planets per Sun-like star.
The radius of an exoplanet may be affected by various factors, including irradiation, planet mass and heavy element content. A significant number of transiting exoplanets have now been discovered for which the mass, radius, semi-major axis, host star metallicity and stellar effective temperature are known. We use multivariate regression models to determine the dependence of planetary radius on planetary equilibrium temperature T_eq, planetary mass M_p, stellar metallicity [Fe/H], orbital semi-major axis a, and tidal heating rate H_tidal, for 119 transiting planets in three distinct mass regimes. We determine that heating leads to larger planet radii, as expected, increasing mass leads to increased or decreased radii of low-mass (<0.5R_J) and high-mass (>2.0R_J) planets, respectively (with no mass effect on Jupiter-mass planets), and increased host-star metallicity leads to smaller planetary radii, indicating a relationship between host-star metallicity and planet heavy element content. For Saturn-mass planets, a good fit to the radii may be obtained from log(R_p/R_J)=-0.077+0.450 log(M_p/M_J)-0.314[Fe/H]+0.671 log(a/AU)+0.398 log(T_eq/K). The radii of Jupiter-mass planets may be fit by log(R_p/R_J)=-2.217+0.856 log(T_eq/K)+0.291 log(a/AU). High-mass planets radii are best fit by log(R_p/R_J)=-1.067+0.380 log(T_eq/K)-0.093 log(M_p/M_J)-0.057[Fe/H]+0.019 log(H_tidal/1x10^{20}). These equations produce a very good fit to the observed radii, with a mean absolute difference between fitted and observed radius of 0.11R_J. A clear distinction is seen between the core-dominated Saturn-mass (0.1-0.5M_J) planets, whose radii are determined almost exclusively by their mass and heavy element content, and the gaseous envelope-dominated Jupiter-mass (0.5-2.0M_J) planets, whose radii increase strongly with irradiating flux, partially offset by a power-law dependence on orbital separation.
A number of transiting, potentially habitable Earth-sized exoplanets have recently been detected around several nearby M dwarf stars. These worlds represent important targets for atmospheric characterization for the upcoming NASA James Webb Space Telescope. Given that available time for exoplanet characterization will be limited, it is critically important to first understand the capabilities and limitations of JWST when attempting to detect atmospheric constituents for potentially Earth-like worlds orbiting cool stars. Here, we explore coupled climate-chemistry atmospheric models for Earth-like planets orbiting a grid of M dwarf hosts. Using a newly-developed and validated JWST instrument model - the JWST Exoplanet Transit Simulator (JETS) - we investigate the detectability of key biosignature and habitability indicator gaseous species for a variety of relevant instruments and observing modes. Spectrally-resolved detection scenarios as well as cases where the spectral impact of a given species is integrated across the entire range of an instrument/mode are considered and serve to highlight the importance of considering information gained over an entire observable spectral range. When considering the entire spectral coverage of an instrument/mode, detections of methane, carbon dioxide, oxygen and water at signal-to-noise ratio 5 could be achieved with observations of several tens of transits (or less) for cloud-free Earth-like worlds orbiting mid- to late-type M dwarfs at system distances of up to 10-15 pc. When compared to previous results, requisite exposure times for gas species detection depend on approaches to quantifying the spectral impact of the species as well as underlying photochemical model assumptions. Thus, constraints on atmospheric abundances, even if just upper limits, by JWST have the potential to further our understanding of terrestrial atmospheric chemistry.
We report a development of a multi-color simultaneous camera for the 188cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT, has a capability of 3-color simultaneous imaging in optical wavelength where CCDs are sensitive. MuSCAT is equipped with three 1024x1024 pixel CCDs, which can be controlled independently. The three CCDs detect lights in $g_2$ (400--550 nm), $r_2$ (550--700 nm), and $z_{s,2}$ (820--920 nm) bands using Astrodon Photometrics Generation 2 Sloan filters. The field of view of MuSCAT is 6.1x6.1 arcmin$^2$ with the pixel scale of 0.358 arcsec per pixel. The principal purpose of MuSCAT is to perform high precision multi-color transit photometry. For the purpose, MuSCAT has a capability of self autoguiding which enables to fix positions of stellar images within ~1 pix. We demonstrate relative photometric precisions of 0.101%, 0.074%, and 0.076% in $g_2$, $r_2$, and $z_{s,2}$ bands, respectively, for GJ436 (magnitudes in $g$=11.81, $r$=10.08, and $z$=8.66) with 30 s exposures. The achieved precisions meet our objective, and the instrument is ready for operation.