We demonstrate the accuracy of the hybrid functional HSE06 for computing band offsets of semiconductor alloy heterostructures. The highlight of this study is the computation of conduction band offsets with a reliability that has eluded standard density functional theory. A high-quality special quasirandom structure models an infinite random pseudobinary alloy for constructing heterostructures along the (001) growth direction. Our excellent results for a variety of heterostructures establish HSE06s relevance to band engineering of high-performance electrical and optoelectronic devices.
Perovskite SrTiO3 (STO) is an attractive photocatalyst for solar water splitting, but suffers from a limited photoresponse in the ultraviolet spectral range due to its wide band gap. By means of hybrid density functional theory calculations, we systematically study engineering its band gap via doping 4d and 5d transition metals M (M=Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt) and chalcogen elements Y (Y=S and Se). We find that transition metal dopant M either has no effect on STO band gap or introduces detrimental mid-gap states, except for Pd and Pt that are able to reduce the STO band gap. In contrast, doping S and Se significantly reduces STOs direct band gap, thus leading to appreciable optical absorption transitions in the visible spectral range. Our findings provide that Pd, S and Se doped STO are potential promising photocatalysts for water splitting under visible light irradiation, thereby providing insightful theoretical guides for experiments to improve the photocatalytic activity of STO.
The electronic structure of heterointerfaces play a pivotal role in their device functionality. Recently, highly crystalline ultrathin films of superconducting NbN have been integrated by molecular beam epitaxy with the semiconducting GaN. We use soft X-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures for both NbN and GaN constituents of this Schottky heterointerface, and determine their momentum-dependent interfacial band offset as well as the band-bending profile into GaN. We find, in particular, that the Fermi states in NbN are aligned against the band gap in GaN, which excludes any significant electronic cross-talk of the superconducting states in NbN through the interface to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties elucidated by the combined materials advances and experimental methods in our work opens up new possibilities in systems where interfacial states play a defining role.
We discuss the structural and electronic properties of tetragonal CuO grown on SrTiO3(100) by means of hybrid density functional theory. Our analysis explains the anomalously large Cu-O vertical distance observed in the experiments (~2.7 A) in terms of a peculiar frustration between two competing local Cu-O environments characterized by different in-plane and out-of-plane bond lengths and Cu electronic populations. The proper inclusion of substrate effects is crucial to understand the tetragonal expansion and to reproduce correctly the measured valence band spectrum for a CuO thickness of 3-3.5 unit cells, in agreement with the experimentally estimated thickness.
The past few years has brought renewed focus on the physics behind the class of materials characterized by long-range interactions and wide regions of low electron density, sparse matter. There is now much work on developing the appropriate algorithms and codes able to correctly describe this class of materials within a parameter-free quantum physical description. In particular, van der Waals (vdW) forces play a major role in building up material cohesion in sparse matter. This work presents an application to the vanadium pentoxide (V2O5) bulk structure of t
We study the electronic structure and magnetism of 25% Mn substituted cubic Zirconia (ZrO2) with several homogeneous and heterogeneous doping profiles using density-functional theory calculations. We find that all doping profiles show half-metallic ferromagnetism (HMF), and delta-doping is most energy favorable while homogeneous doping has largest ferromagnetic stabilization energy. Using crystal field theory, we discuss the formation scheme of HMF. Finally, we speculate the potential spintronics applications for Mn doped ZrO2, especially as spin direction controllment.