Do you want to publish a course? Click here

Ferromagnetism in Mn Substituted Zirconia: A Density-functional Theory Study

487   0   0.0 ( 0 )
 Added by Wei yang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the electronic structure and magnetism of 25% Mn substituted cubic Zirconia (ZrO2) with several homogeneous and heterogeneous doping profiles using density-functional theory calculations. We find that all doping profiles show half-metallic ferromagnetism (HMF), and delta-doping is most energy favorable while homogeneous doping has largest ferromagnetic stabilization energy. Using crystal field theory, we discuss the formation scheme of HMF. Finally, we speculate the potential spintronics applications for Mn doped ZrO2, especially as spin direction controllment.



rate research

Read More

Using the first-principles density-functional theory plan-wave pseudopotential method, we investigate the structure and magnetism in 25% Mn substitutive and interstitial doped monoclinic, tetragonal and cubic ZrO2 systematically. Our studies show that the introduction of Mn impurities into ZrO2 not only stabilizes the high temperature phase, but also endows ZrO2 with magnetism. Based on the simple crystal field theory (CFT), we discuss the origination of magnetism in Mn doped ZrO2. Moreover, we discuss the effect of electron donor on magnetic semiconductors, and the possibility as electronic structure modulator.
In a recent letter, it has been predicted within first principle studies that Mn-doped ZrO2 compounds could be good candidate for spintronics application because expected to exhibit ferromagnetism far beyond room temperature. Our purpose is to address this issue experimentally for Mn-doped tetragonal zirconia. We have prepared polycrystalline samples of Y0.15(Zr0.85-yMny)O2 (y=0, 0.05, 0.10, 0.15 & 0.20) by using standard solid state method at equilibrium. The obtained samples were carefully characterized by using x-ray diffraction, scanning electron microscopy, elemental color mapping, X-ray photoemission spectroscopy and magnetization measurements. From the detailed structural analyses, we have observed that the 5% Mn doped compound crystallized into two symmetries (dominating tetragonal & monoclinic), whereas higher Mn doped compounds are found to be in the tetragonal symmetry only. The spectral splitting of the Mn 3s core-level x-ray photoelectron spectra confirms that Mn ions are in the Mn3+ oxidation state and indicate a local magnetic moment of about 4.5 {mu}B/Mn. Magnetic measurements showed that compounds up to 10% of Mn doping are paramagnetic with antiferromagnetic interactions. However, higher Mn doped compound exhibits local ferrimagnetic ordering. Thus, no ferromagnetism has been observed for all Mn-doped tetragonal ZrO2 samples.
We present an approach to generate machine-learned force fields (MLFF) with beyond density functional theory (DFT) accuracy. Our approach combines on-the-fly active learning and $Delta$-machine learning in order to generate an MLFF for zirconia based on the random phase approximation (RPA). Specifically, an MLFF trained on-the-fly during DFT based molecular dynamics simulations is corrected by another MLFF that is trained on the differences between RPA and DFT calculated energies, forces and stress tensors. Thanks to the relatively smooth nature of the differences, the expensive RPA calculations are performed only on a small number of representative structures of small unit cells. These structures are determined by a singular value decomposition rank compression of the kernel matrix with low spatial resolution. This dramatically reduces the computational cost and allows us to generate an MLFF fully capable of reproducing high-level quantum-mechanical calculations beyond DFT. We carefully validate our approach and demonstrate its success in studying the phase transitions of zirconia.
The magnetism in 12.5% and 25% Mn delta-doped cubic GaN has been investigated using the density-functional theory calculations. The results show that the single-layer delta-doping and half-delta-doping structures show robust ground state half-metallic ferromagnetism (HMF), and the double-layer delta-doping structure shows robust ground state antiferromagnetism (AFM) with large spin-flip energy of 479.0 meV per Mn-Mn pair. The delta-doping structures show enhanced two-dimensional magnetism. We discuss the origin of the HMF using a simple crystal field model. Finally, we discuss the antiferromagnet/ferromagnet heterostructure based on Mn doped GaN.
129 - D. Wang , L. Liu , W. Huang 2019
High-entropy alloys (HEAs), which have been intensely studied due to their excellent mechanical properties, generally refer to alloys with multiple equimolar or nearly equimolar elements. According to this definition, Si-Ge-Sn alloys with equal or comparable concentrations of the three Group IV elements belong to the category of HEAs. As a result, the equimolar elements of Si-Ge-Sn alloys likely cause their atomic structures to exhibit the same core effects of metallic HEAs such as lattice distortion. Here we apply density functional theory (DFT) calculations to show that the SiGeSn HEA indeed exhibits a large local distortion effect. Unlike metallic HEAs, our Monte Carlo and DFT calculations show that the SiGeSn HEA exhibits no chemical short-range order due to the similar electronegativity of the constituent elements, thereby increasing the configurational entropy of the SiGeSn HEA. Hybrid density functional calculations show that the SiGeSn HEA remains semiconducting with a band gap of 0.38 eV, promising for economical and compatible mid-infrared optoelectronics applications. We then study the energetics of neutral single Si, Ge, and Sn vacancies and (expectedly) find wide distributions of vacancy formation energies, similar to those found in metallic HEAs. However, we also find anomalously small lower bounds (e.g., 0.04 eV for a Si vacancy) in the energy distributions, which arise from the bond reformation near the vacancy. Such small vacancy formation energies and their associated bond reformations retain the semiconducting behavior of the SiGeSn HEA, which may be a signature feature of a semiconducting HEA that differentiates from metallic HEAs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا