No Arabic abstract
We have used moderate resolution, near-infrared spectra from the SpeX spectrograph on the NASA Infrared Telescope facility to characterize the stellar content of Barnard 59 (B59), the most active star-forming core in the Pipe Nebula. Measuring luminosity and temperature sensitive features in the spectra of 20 candidate YSOs, we identified likely background giant stars and measured each stars spectral type, extinction, and NIR continuum excess. We find that B59 is composed of late type (K4-M6) low-mass (0.9--0.1 M_sun) YSOs whose median stellar age is comparable to, if not slightly older than, that of YSOs within the Rho Oph, Taurus, and Chameleon star forming regions. Deriving absolute age estimates from pre-main sequence models computed by DAntona et al., and accounting only for statistical uncertainties, we measure B59s median stellar age to be 2.6+/-0.8 Myrs. Including potential systematic effects increases the error budget for B59s median (DM98) stellar age to 2.6+4.1/-2.6 Myrs. We also find that the relative age orderings implied by pre-main sequence evolutionary tracks depend on the range of stellar masses sampled, as model isochrones possess significantly different mass dependencies. The maximum likelihood median stellar age we measure for B59, and the regions observed gas properties, suggest that the B59 dense core has been stable against global collapse for roughly 6 dynamical timescales, and is actively forming stars with a star formation efficiency per dynamical time of ~6%. This maximum likelihood value agrees well with recent star formation simulations that incorporate various forms of support against collapse, such as sub-critical magnetic fields, outflows, and radiative feedback from protostellar heating. [abridged]
We present Very Large Array continuum observations made at 8.3 GHz toward the dense core B59, in the Pipe Nebula. We detect six compact sources, of which five are associated with the five most luminous sources at 70 micrometer in the region, while the remaining one is probably a background source. We propose that the radio emission is free-free from the ionized outflows present in these protostars. We discuss the kinematical impact of these winds in the cloud. We also propose that these winds are optically thick in the radio but optically thin in the X-rays and that this characteristic can explain why X-rays from the magnetosphere are detected in three of them, while the radio emission is most probably dominated by the free-free emission from the external layers of the wind.
We present the chemistry, temperature, and dynamical state of a sample of 193 dense cores or core candidates in the Perseus Molecular cloud and compare the properties of cores associated with young stars and clusters with those which are not. The combination of our NH3 and CCS observations with previous millimeter, sub-millimeter, and Spitzer data available for this cloud enable us both to determine core properties precisely and to accurately classify cores as starless or protostellar. The properties of cores in different cluster environments and before-and-after star formation provide important constraints on simulations of star-formation, particularly under the paradigm that the essence of star formation is set by the turbulent formation of prestellar cores. We separate the influence of stellar content from that of cluster environment and find that cores within clusters have (1) higher kinetic temperatures and (2) lower fractional abundances of CCS and NH3. Cores associated with protostars have (1) slightly higher kinetic temperatures (2) higher NH3 excitation temperatures), (3) are at higher column density, have (4) slightly more non-thermal/turbulent NH3 linewidths, have (5) higher masses and have (6) lower fractional abundance of CCS. We find that neither cluster environment nor protostellar content makes a significant difference to the dynamical state of cores as estimated by the virial parameter -- most cores in each category are gravitationally bound. Overall, cluster environment and protostellar content have a smaller influence on the properties of the cores than is typically assumed, and the variation within categories is larger than the differences between categories.
In this work we have carried out an in-depth analysis of the young stellar content in the W3 GMC. The YSO population was identified and classified in the IRAC/MIPS color-magnitude space according to the `Class scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low/intermediate-mass pre-main-sequence stars selected through their colors and magnitudes in 2MASS. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate mass objects can be more reliably identified. By means of the MST algorithm and our YSO spatial distribution and age maps we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high density layer also shows signs of extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming an spontaneous origin for the isolated massive star(s) powering KR 140.
We present a simple statistical analysis of recent numerical simulations exploring the correlation between the core mass function obtained from the fragmentation of a molecular cloud and the stellar mass function which forms from these collapsing cores. Our analysis shows that the distributions of bound cores and sink particles obtained in the simulations are consistent with the sinks being formed predominantly from their parent core mass reservoir, with a statistical dispersion of the order of one third of the core mass. Such a characteristic dispersion suggests that the stellar initial mass function is relatively tightly correlated to the parent core mass function, leading to two similar distributions, as observed. This in turn argues in favor of the IMF being essentially determined at the early stages of core formation and being only weakly affected by the various environmental factors beyond the initial core mass reservoir, at least in the mass range explored in the present study. Accordingly, the final IMF of a star forming region should be determined reasonably accurately, statistically speaking, from the initial core mass function, provided some uniform efficiency factor. The calculations also show that these statistical fluctuations, due e.g. to variations among the core properties, broaden the low-mass tail of the IMF compared with the parent CMF, providing an explanation for the fact that this latter appears to underestimate the number of pre brown dwarf cores compared with the observationally-derived brown dwarf IMF.
Context The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size 19.2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 Msun. Results We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1--6 pc is also found, hinting at fractionation of magnetised, turbulent gas.