Do you want to publish a course? Click here

Dense cores and star formation in the giant molecular cloud Vela~C

71   0   0.0 ( 0 )
 Added by Fabrizio Massi
 Publication date 2019
  fields Physics
and research's language is English
 Authors F. Massi




Ask ChatGPT about the research

Context The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size 19.2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 Msun. Results We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1--6 pc is also found, hinting at fractionation of magnetised, turbulent gas.



rate research

Read More

As part of the Herschel guaranteed time key program HOBYS, we present the photometric survey of the star forming region Vela-C, one of the nearest sites of low-to-high-mass star formation in the Galactic plane. Vela-C has been observed with PACS and SPIRE in parallel mode between 70 um and 500 um over an area of about 3 square degrees. A photometric catalogue has been extracted from the detections in each band, using a threshold of 5 sigma over the local background. Out of this catalogue we have selected a robust sub-sample of 268 sources, of which 75% are cloud clumps and 25% are cores. Their Spectral Energy Distributions (SEDs) have been fitted with a modified black body function. We classify 48 sources as protostellar and 218 as starless. For two further sources, we do not provide a secure classification, but suggest they are Class 0 protostars. From SED fitting we have derived key physical parameters. Protostellar sources are in general warmer and more compact than starless sources. Both these evidences can be ascribed to the presence of an internal source(s) of moderate heating, which also causes a temperature gradient and hence a more peaked intensity distribution. Moreover, the reduced dimensions of protostellar sources may indicate that they will not fragment further. A virial analysis of the starless sources gives an upper limit of 90% for the sources gravitationally bound and therefore prestellar. We fit a power law N(logM) prop M^-1.1 to the linear portion of the mass distribution of prestellar sources. This is in between that typical of CO clumps and those of cores in nearby star-forming regions. We interpret this as a result of the inhomogeneity of our sample, which is composed of comparable fractions of clumps and cores.
Polarization maps of the Vela C molecular cloud were obtained at 250, 350, and 500um during the 2012 flight of the balloon-borne telescope BLASTPol. These measurements are used in conjunction with 850um data from Planck to study the submillimeter spectrum of the polarization fraction for this cloud. The spectrum is relatively flat and does not exhibit a pronounced minimum at lambda ~350um as suggested by previous measurements of other molecular clouds. The shape of the spectrum does not depend strongly on the radiative environment of the dust, as quantified by the column density or the dust temperature obtained from Herschel data. The polarization ratios observed in Vela C are consistent with a model of a porous clumpy molecular cloud being uniformly heated by the interstellar radiation field.
The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appear to be a smooth transition from the pre- to the proto-stellar phase. In particular, for proto-stellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.
97 - B. Wiles , N. Lo , M. P. Redman 2016
Three bright molecular line sources in G333 have recently been shown to exhibit signatures of infall. We describe a molecular line radiative transfer modelling process which is required to extract the infall signature from Mopra and Nanten2 data. The observed line profiles differ greatly between individual sources but are reproduced well by variations upon a common unified model where the outflow viewing angle is the most significant difference between the sources. The models and data together suggest that the observed properties of the high-mass star-forming regions such as infall, turbulence, and mass are consistent with scaled-
Using Spitzer Space Telescope and Chandra X-ray Observatory data, we identify YSOs in the Rosette Molecular Cloud (RMC). By being able to select cluster members and classify them into YSO types, we are able to track the progression of star formation locally within the cluster environments and globally within the cloud. We employ nearest neighbor method (NNM) analysis to explore the density structure of the clusters and YSO ratio mapping to study age progressions in the cloud. We find a relationship between the YSO ratios and extinction which suggests star formation occurs preferentially in the densest parts of the cloud and that the column density of gas rapidly decreases as the region evolves. This suggests rapid removal of gas may account for the low star formation efficiencies observed in molecular clouds. We find that the overall age spread across the RMC is small. Our analysis suggests that star formation started throughout the complex around the same time. Age gradients in the cloud appear to be localized and any effect the HII region has on the star formation history is secondary to that of the primordial collapse of the cloud.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا