Do you want to publish a course? Click here

Star formation: statistical measure of the correlation between the prestellar core mass function and the stellar initial mass function

197   0   0.0 ( 0 )
 Added by Gilles Chabrier
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a simple statistical analysis of recent numerical simulations exploring the correlation between the core mass function obtained from the fragmentation of a molecular cloud and the stellar mass function which forms from these collapsing cores. Our analysis shows that the distributions of bound cores and sink particles obtained in the simulations are consistent with the sinks being formed predominantly from their parent core mass reservoir, with a statistical dispersion of the order of one third of the core mass. Such a characteristic dispersion suggests that the stellar initial mass function is relatively tightly correlated to the parent core mass function, leading to two similar distributions, as observed. This in turn argues in favor of the IMF being essentially determined at the early stages of core formation and being only weakly affected by the various environmental factors beyond the initial core mass reservoir, at least in the mass range explored in the present study. Accordingly, the final IMF of a star forming region should be determined reasonably accurately, statistically speaking, from the initial core mass function, provided some uniform efficiency factor. The calculations also show that these statistical fluctuations, due e.g. to variations among the core properties, broaden the low-mass tail of the IMF compared with the parent CMF, providing an explanation for the fact that this latter appears to underestimate the number of pre brown dwarf cores compared with the observationally-derived brown dwarf IMF.



rate research

Read More

457 - Simon P Goodwin 2007
Stars form from dense molecular cores, and the mass function of these cores (the CMF) is often found to be similar to the form of the stellar initial mass function (IMF). This suggests that the form of the IMF is the result of the form of the CMF. However, most stars are thought to form in binary and multiple systems, therefore the relationship between the IMF and the CMF cannot be trivial. We test two star formation scenarios - one in which all stars form as binary or triple systems, and one in which low-mass stars form in a predominantly single mode. We show that from a log-normal CMF, similar to those observed, and expected on theoretical grounds, the model in which all stars form as multiples gives a better fit to the IMF.
We have studied the star formation history and the initial mass function (IMF) using the age and mass derived from spectral energy distribution (SED) fitting and from color-magnitude diagrams. We also examined the physical and structural parameters of more than 1,000 pre-main sequence stars in NGC 2264 using the on-line SED fitting tool (SED fitter) of Robitaille et al. The cumulative distribution of stellar ages showed a distinct difference among SFRs. The results indicate that star formation in NGC 2264 started at the surface region (Halo and Field regions) about 6 - 7 Myr ago, propagated into the molecular cloud and finally triggered the recent star formation in the Spokes cluster. The kind of sequential star formation that started in the low-density surface region (Halo and Field regions) implies that star formation in NGC 2264 was triggered by an external source. The IMF of NGC 2264 was determined in two different ways. The slope of the IMF of NGC 2264 for massive stars (log m >= 0.5) is -1.7 pm 0.1, which is somewhat steeper than the so-called standard Salpeter-Kroupa IMF. We also present data for 79 young brown dwarf candidates.
We present a new technique to quantify cluster-to-cluster variations in the observed present-day stellar mass functions of a large sample of star clusters. Our method quantifies these differences as a function of both the stellar mass and the total cluster mass, and offers the advantage that it is insensitive to the precise functional form of the mass function. We applied our technique to data taken from the ACS Survey for Globular Clusters, from which we obtained completeness-corrected stellar mass functions in the mass range 0.25-0.75 M$_{odot}$ for a sample of 27 clusters. The results of our observational analysis were then compared to Monte Carlo simulations for globular cluster evolution spanning a range of initial mass functions, total numbers of stars, concentrations, and virial radii. We show that the present-day mass functions of the clusters in our sample can be reproduced by assuming an universal initial mass function for all clusters, and that the cluster-to-cluster differences are consistent with what is expected from two-body relaxation. A more complete exploration of the initial cluster conditions will be needed in future studies to better constrain the precise functional form of the initial mass function. This study is a first step toward using our technique to constrain the dynamical histories of a large sample of old Galactic star clusters and, by extension, star formation in the early Universe.
The stellar initial mass function (IMF) is a fundamental property of star formation, offering key insight into the physics driving the process as well as informing our understanding of stellar populations, their by-products, and their impact on the surrounding medium. While the IMF appears to be fairly uniform in the Milky Way disk, it is not yet known how the IMF might behave across a wide range of environments, such as those with extreme gas temperatures and densities, high pressures, and low metallicities. We discuss new opportunities for measuring the IMF in such environments in the coming decade with JWST, WFIRST, and thirty-meter class telescopes. For the first time, we will be able to measure the high-mass slope and peak of the IMF via direct star counts for massive star clusters across the Milky Way and Local Group, providing stringent constraints for star formation theory and laying the groundwork for understanding distant and unresolved stellar systems.
the present paper, we propose that the stellar initial mass distributions as known as IMF are best fitted by $q$-Weibulls that emerge within nonextensive statistical mechanics. As a result, we show that the Salpeters slope of $sim$2.35 is replaced when a $q$-Weibull distribution is used. Our results point out that the nonextensive entropic index $q$ represents a new approach for understanding the process of the star-forming and evolution of massive stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا