Do you want to publish a course? Click here

Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

140   0   0.0 ( 0 )
 Added by Paul Eastham
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In(0.23)Ga(0.77)As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.



rate research

Read More

We investigate formation of Bose-Einstein condensates under non-equilibrium conditions using numerical simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear excitations and the forcing at high wave numbers, and study propagation of the turbulent spectrum toward the low wave numbers. Our primary goal is to compare the results for the evolving spectrum with the previous results obtained for the kinetic equation of weak wave turbulence. We demonstrate existence of a regime for which good agreement with the wave turbulence results is found in terms of the main features of the previously discussed self-similar solution. In particular, we find a reasonable agreement with the low-frequency and the high-frequency power-law asymptotics of the evolving solution, including the anomalous power-law exponent $x^* approx 1.24$ for the three-dimensional waveaction spectrum. We also study the regimes of very weak turbulence, when the evolution is affected by the discreteness of the Fourier space, and the strong turbulence regime when emerging condensate modifies the wave dynamics and leads to formation of strongly nonlinear filamentary vortices.
We present a comprehensive analysis of critical behavior in the driven-dissipative Bose condensation transition in three spatial dimensions. Starting point is a microscopic description of the system in terms of a many-body quantum master equation, where coherent and driven-dissipative dynamics occur on an equal footing. An equivalent Keldysh real time functional integral reformulation opens up the problem to a practical evaluation using the tools of quantum field theory. In particular, we develop a functional renormalization group approach to quantitatively explore the universality class of this stationary non-equilibrium system. Key results comprise the emergence of an asymptotic thermalization of the distribution function, while manifest non-equilibrium properties are witnessed in the response properties in terms of a new, independent critical exponent. Thus the driven-dissipative microscopic nature is seen to bear observable consequences on the largest length scales. The absence of two symmetries present in closed equilibrium systems - underlying particle number conservation and detailed balance, respectively - is identified as the root of this new non-equilibrium critical behavior. Our results are relevant for broad ranges of open quantum systems on the interface of quantum optics and many-body physics, from exciton-polariton condensates to cold atomic gases.
Solid state quantum condensates can differ from other condensates, such as Helium, ultracold atomic gases, and superconductors, in that the condensing quasiparticles have relatively short lifetimes, and so, as for lasers, external pumping is required to maintain a steady state. In this chapter we present a non-equilibrium path integral approach to condensation in a dissipative environment and apply it to microcavity polaritons, driven out of equilibrium by coupling to multiple baths, describing pumping and decay. Using this, we discuss the relation between non-equilibrium polariton condensation, lasing, and equilibrium condensation.
We report the formation of Bose-Einstein condensates into non-equilibrium states. Our condensates are much longer than equilibrium condensates with the same number of atoms, show strong phase fluctuations, and have a dynamical evolution similar to that of quadrupole shape oscillations of regular condensates. The condensates emerge in elongated traps as the result of local thermalization when the nucleation time is short compared to the axial oscillation time. We introduce condensate focusing as a powerful method to extract the phase-coherence length of Bose-Einstein condensates.
513 - D. N. Sobyanin 2013
A theory of Bose-Einstein condensation (BEC) of light in a dye microcavity is developed. The photon polarization degeneracy and the interaction between dye molecules and photons in all of the cavity modes are taken into account. The theory goes beyond the grand canonical approximation and allows one to determine the statistical properties of the photon gas for all numbers of dye molecules and photons at all temperatures, thus describing the microscopic, mesoscopic, and macroscopic light BEC from a general perspective. A universal relation between the degrees of second-order coherence for the photon condensate and the polarized photon condensate is obtained. The photon Bose-Einstein condensate can be used as a new source of nonclassical light.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا