Do you want to publish a course? Click here

Modelling the spectral energy distribution of galaxies: introducing the artificial neural network

251   0   0.0 ( 0 )
 Added by Laura Silva
 Publication date 2010
  fields Physics
and research's language is English
 Authors L. Silva




Ask ChatGPT about the research

The spectral energy distribution of galaxies is a complex function of the star formation history and geometrical arrangement of stars and gas in galaxies. The computation of the radiative transfer of stellar radiation through the dust distribution is time-consuming. This aspect becomes unacceptable in particular when dealing with the predictions by semi-analytical galaxy formation models populating cosmological volumes, to be then compared with multi-wavelength surveys. Mainly for this aim, we have implemented an artificial neural network algorithm into the spectro-photometric and radiative transfer code GRASIL in order to compute the spectral energy distribution of galaxies in a short computing time. This allows to avoid the adoption of empirical templates that may have nothing to do with the mock galaxies output by models. The ANN has been implemented to compute the dust emission spectrum (the bottleneck of the computation), and separately for the star-forming molecular clouds and the diffuse dust (due to their different properties and dependencies). We have defined the input neurons effectively determining their emission, which means this implementation has a general applicability and is not linked to a particular galaxy formation model. We have trained the net for the disc and spherical geometries, and tested its performance to reproduce the SED of disc and starburst galaxies, as well as for a semi-analytical model for spheroidal galaxies. We have checked that for this model both the SEDs and the galaxy counts in the Herschel bands obtained with the ANN approximation are almost superimposed to the same quantities obtained with the full GRASIL. We conclude that this method appears robust and advantageous, and will present the application to a more complex SAM in another paper.



rate research

Read More

70 - T J Galvin , N Seymour , J Marvil 2017
We have acquired radio continuum data between 70,MHz and 48,GHz for a sample of 19 southern starburst galaxies at moderate redshifts ($0.067 < z < 0.227$) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework we find the radio continuum is rarely characterised well by a single power law, instead often exhibiting low frequency turnovers below 500,MHz, steepening at mid-to-high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 to 500,MHz the radio-continuum at low frequency ($ u < 200$,MHz) could be overestimated by upwards of a factor of twelve if a simple power law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be $alpha=-1.06$, which is steeper then the canonical value of $-0.8$ for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
350 - Aya Kubota 2019
We develop a broadband spectral model, agnsli}, to describe super-Eddington black hole accretion disc spectra. This is based on the slim disc emissivity, where radial advection keeps the surface luminosity at the local Eddington limit, resulting in L(r)~ r^{-2} rather than the r^{-3} expected from the Novikov-Thorne (standard, sub-Eddington) disc emissivity. Wind losses should also be important but these are expected to produce a similar radiative emissivity. We assume that the flow is radially stratified, with an outer standard disc, an inner hot Comptonising region and an intermediate warm Comptonising region to produce the soft X-ray excess. This gives the model enough flexibility to fit the observed data, but with the additional requirement of energy conservation to give physical constraints. We use this to fit the broadband spectrum of one of the most extreme Active Galactic Nuclei, the Narrow Line Seyfert 1 RX J0439.6-5311, which has a black hole mass of (6~9) times 10^6 solar mass as derived from the H_beta line width. This cannot be fit with the standard disc emissivity at this mass, as even zero spin models overproduce the observed luminosity. Instead, we show that the spectrum is well reproduced by the slim disc model, giving mass accretion rates around (5~10) times Eddington limit. There is no constraint on black hole spin as the efficiency is reduced by advection. Such extreme accretion rates should be characteristic of the first Quasars, and we demonstrate this by fitting to the spectrum of a recently discovered super-Eddington Quasar, PSO J006+39, at z=6.6.
131 - A. Ruiz 2010
The relationship between star formation and super-massive black hole growth is central to our understanding of galaxy formation and evolution. Hyper-Luminous Infrared Galaxies (HLIRGs) are unique laboratories to investigate the connection between starburst (SB) and Active Galactic Nuclei (AGN), since they exhibit extreme star formation rates, and most of them show evidence of harbouring powerful AGN. Our previous X-ray study of a sample of 14 HLIRGs shows that the X-ray emission of most HLIRGs is dominated by AGN activity. To improve our estimate of the relative contribution of the AGN and SB emission to its total bolometric output, we have built broad band spectral energy distributions (SEDs) for these HLIRGs, and we have fitted empirical AGN and SB templates to these SEDs. In broad terms, most sources are well fitted using this method, and we found AGN and SB contributions similar to those obtained by previous studies of HLIRGs. We have classified the HLIRGs SEDs in two groups, named class A and class B. Class A HLIRGs show a flat SED from the optical to the infrared energy range. Three out of seven class A sources can be modelled with a pure luminosity-dependent QSO template, while the rest of them require a type 1 AGN template and a SB template. The SB component is dominant in three out of four class A objects. Class B HLIRGs show SEDs with a prominent and broad IR bump. These sources can not trivially be modelled with a combination of pure AGN and pure SB, they require templates of composite objects, suggesting that >50% of their emission comes from stellar formation processes. We propose that our sample is actually composed by three different populations: very luminous QSO, young galaxies going through their maximal star formation period and the high luminosity tail of ULIRG population distribution.
We present new calculations of the attenuation of stellar light from spiral galaxies using geometries for stars and dust which can reproduce the entire spectral energy distribution from the UV to the FIR/submm and can also account for the surface brightness distribution in both the optical/NIR and FIR/submm. The calculations are based on the model of Popescu et al. (2000), which incorporates a dustless stellar bulge, a disk of old stars with associated diffuse dust, a thin disk of young stars with associated diffuse dust, and a clumpy dust component associated with star-forming regions in the thin disk. The attenuations, which incorporate the effects of multiple anisotropic scattering, are derived separately for each stellar component, and presented in the form of easily accessible polynomial fits as a function of inclination, for a grid in optical depth and wavelength. The wavelength range considered is between 912 AA and 2.2 micron, sampled such that attenuation can be conveniently calculated both for the standard optical bands and for the bands covered by GALEX. The attenuation characteristics of the individual stellar components show marked differences between each other. A general formula is given for the calculation of composite attenuation, valid for any combination of the bulge-to-disk ratio and amount of clumpiness. As an example, we show how the optical depth derived from the variation of attenuation with inclination depends on the bulge-to-disk ratio. Finally, a recipe is given for a self-consistent determination of the optical depth from the Halpha/Hbeta line ratio.
122 - C. S. Chang , E. Ros , M. Kadler 2010
We are constructing the broadband SED catalog of the MOJAVE sample from the radio to the gamma-ray band using MOJAVE, Swift UVOT/XRT/BAT, and Fermi/LAT data, in order to understand the emission mechanism of extragalactic outflows and to investigate the site of high-energy emission in AGN. Since the launch of Fermi gamma-ray Space Telescope in August 2008, two thirds of the MOJAVE sources have been detected by Fermi/LAT. Combining the results of high-resolution VLBI, X-ray, and gamma-ray observations of the jet-dominated AGN sample, we want to pin down the origin of high-energy emission in relativistic jets. Here we present our overall project and preliminary results for 6 selected sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا