Do you want to publish a course? Click here

Modelling the spectral energy distribution of galaxies. III. Attenuation of stellar light in spiral galaxies

71   0   0.0 ( 0 )
 Added by Richard J. Tuffs
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new calculations of the attenuation of stellar light from spiral galaxies using geometries for stars and dust which can reproduce the entire spectral energy distribution from the UV to the FIR/submm and can also account for the surface brightness distribution in both the optical/NIR and FIR/submm. The calculations are based on the model of Popescu et al. (2000), which incorporates a dustless stellar bulge, a disk of old stars with associated diffuse dust, a thin disk of young stars with associated diffuse dust, and a clumpy dust component associated with star-forming regions in the thin disk. The attenuations, which incorporate the effects of multiple anisotropic scattering, are derived separately for each stellar component, and presented in the form of easily accessible polynomial fits as a function of inclination, for a grid in optical depth and wavelength. The wavelength range considered is between 912 AA and 2.2 micron, sampled such that attenuation can be conveniently calculated both for the standard optical bands and for the bands covered by GALEX. The attenuation characteristics of the individual stellar components show marked differences between each other. A general formula is given for the calculation of composite attenuation, valid for any combination of the bulge-to-disk ratio and amount of clumpiness. As an example, we show how the optical depth derived from the variation of attenuation with inclination depends on the bulge-to-disk ratio. Finally, a recipe is given for a self-consistent determination of the optical depth from the Halpha/Hbeta line ratio.



rate research

Read More

We analyse a high-resolution, fully cosmological, hydrodynamical disc galaxy simulation, to study the source of the double-exponential light profiles seen in many stellar discs, and the effects of stellar radial migration upon the spatio-temporal evolution of both the disc age and metallicity distributions. We find a break in the pure exponential stellar surface brightness profile, and trace its origin to a sharp decrease in the star formation per unit surface area, itself produced by a decrease in the gas volume density due to a warping of the gas disc. Star formation in the disc continues well beyond the break. We find that the break is more pronounced in bluer wavebands. By contrast, we find little or no break in the mass density profile. This is, in part, due to the net radial migration of stars towards the external parts of the disc. Beyond the break radius, we find that ~60% of the resident stars migrated from the inner disc, while ~25% formed in situ. Our simulated galaxy also has a minimum in the age profile at the break radius but, in disagreement with some previous studies, migration is not the main mechanism producing this shape. In our simulation, the disc metallicity gradient flattens with time, consistent with an inside-out formation scenario. We do not find any difference in the intensity or the position of the break with inclination, suggesting that perhaps the differences found in empirical studies are driven by dust extinction.
217 - L. Silva 2010
The spectral energy distribution of galaxies is a complex function of the star formation history and geometrical arrangement of stars and gas in galaxies. The computation of the radiative transfer of stellar radiation through the dust distribution is time-consuming. This aspect becomes unacceptable in particular when dealing with the predictions by semi-analytical galaxy formation models populating cosmological volumes, to be then compared with multi-wavelength surveys. Mainly for this aim, we have implemented an artificial neural network algorithm into the spectro-photometric and radiative transfer code GRASIL in order to compute the spectral energy distribution of galaxies in a short computing time. This allows to avoid the adoption of empirical templates that may have nothing to do with the mock galaxies output by models. The ANN has been implemented to compute the dust emission spectrum (the bottleneck of the computation), and separately for the star-forming molecular clouds and the diffuse dust (due to their different properties and dependencies). We have defined the input neurons effectively determining their emission, which means this implementation has a general applicability and is not linked to a particular galaxy formation model. We have trained the net for the disc and spherical geometries, and tested its performance to reproduce the SED of disc and starburst galaxies, as well as for a semi-analytical model for spheroidal galaxies. We have checked that for this model both the SEDs and the galaxy counts in the Herschel bands obtained with the ANN approximation are almost superimposed to the same quantities obtained with the full GRASIL. We conclude that this method appears robust and advantageous, and will present the application to a more complex SAM in another paper.
High resolution Fabry-Perot data of six spiral galaxies are presented. Those data extend the previous sample of spiral galaxies studied with high resolution 3D spectroscopy to earlier morphological types. All the galaxies in the sample have available HI data at 21 cm from the VLA or Westerbork. Velocity fields are analyzed and Halpha rotation curves are computed and compared to HI curves. The kinematics of NGC 5055 central regions are looked at more closely. Its peculiar kinematics can be interpreted either as a bipolar outflow or as a counter-rotating disk, possibly hosting a 9 pm 2 10^8 Msol compact object. Most of the Halpha rotation curves present a significantly steeper inner slope than their HI counterparts. The 21 cm data thus seems affected by moderate to strong beam smearing. The beam smearing has an effect at higher scale-length/beam-width than previously thought (up to 20 km/s at a ratio of 8.5).
70 - T J Galvin , N Seymour , J Marvil 2017
We have acquired radio continuum data between 70,MHz and 48,GHz for a sample of 19 southern starburst galaxies at moderate redshifts ($0.067 < z < 0.227$) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework we find the radio continuum is rarely characterised well by a single power law, instead often exhibiting low frequency turnovers below 500,MHz, steepening at mid-to-high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 to 500,MHz the radio-continuum at low frequency ($ u < 200$,MHz) could be overestimated by upwards of a factor of twelve if a simple power law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be $alpha=-1.06$, which is steeper then the canonical value of $-0.8$ for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
(Abridged) The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use GALEX, XMM Optical Monitor, and HST data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with candidates provided by Galaxy Zoo participants. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law close to the Calzetti et al. (1994) form; the UV slope for the overall sample is substantially shallower than found by Wild et al. (2011), a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. This grey law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. The extrapolation needed to compare attenution between backlit galaxies at moderate redshifts, and local systems from SDSS data, is mild enough to allow use of galaxy overlaps to trace the cosmic history of dust. For NGC 2207, the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the ultraviolet, which opens the possibility that widespread diffuse dust dominates over dust in star-forming regions deep into the ultraviolet. Comparison with published radiative-transfer models indicates that the role of dust clumping dominates over differences in grain populations, at this spatial resolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا