No Arabic abstract
The relationship between star formation and super-massive black hole growth is central to our understanding of galaxy formation and evolution. Hyper-Luminous Infrared Galaxies (HLIRGs) are unique laboratories to investigate the connection between starburst (SB) and Active Galactic Nuclei (AGN), since they exhibit extreme star formation rates, and most of them show evidence of harbouring powerful AGN. Our previous X-ray study of a sample of 14 HLIRGs shows that the X-ray emission of most HLIRGs is dominated by AGN activity. To improve our estimate of the relative contribution of the AGN and SB emission to its total bolometric output, we have built broad band spectral energy distributions (SEDs) for these HLIRGs, and we have fitted empirical AGN and SB templates to these SEDs. In broad terms, most sources are well fitted using this method, and we found AGN and SB contributions similar to those obtained by previous studies of HLIRGs. We have classified the HLIRGs SEDs in two groups, named class A and class B. Class A HLIRGs show a flat SED from the optical to the infrared energy range. Three out of seven class A sources can be modelled with a pure luminosity-dependent QSO template, while the rest of them require a type 1 AGN template and a SB template. The SB component is dominant in three out of four class A objects. Class B HLIRGs show SEDs with a prominent and broad IR bump. These sources can not trivially be modelled with a combination of pure AGN and pure SB, they require templates of composite objects, suggesting that >50% of their emission comes from stellar formation processes. We propose that our sample is actually composed by three different populations: very luminous QSO, young galaxies going through their maximal star formation period and the high luminosity tail of ULIRG population distribution.
Luminous and ultraluminous infrared galaxies ((U)LIRGs) are the most extreme star forming galaxies in the universe. The local (U)LIRGs provide a unique opportunity to study their multi-wavelength properties in detail for comparison to their more numerous counterparts at high redshifts. We present common large aperture photometry at radio through X-ray wavelengths, and spectral energy distributions (SEDs) for a sample of 53 nearby LIRGs and 11 ULIRGs spanning log (LIR/Lsun) = 11.14-12.57 from the flux-limited Great Observatories All-sky LIRG Survey (GOALS). The SEDs for all objects are similar in that they show a broad, thermal stellar peak and a dominant FIR thermal dust peak, where nuLnu(60um) / nuLnu(V) increases from ~2-30 with increasing LIR. When normalized at IRAS-60um, the largest range in the luminosity ratio, R(lambda)=log[nuLnu(lambda)/nuLnu(60um)] observed over the full sample is seen in the Hard X-rays (HX=2-10 keV). A small range is found in the Radio (1.4GHz), where the mean ratio is largest. Total infrared luminosities, LIR(8-1000um), dust temperatures, and dust masses were computed from fitting thermal dust emission modified blackbodies to the mid-infrared (MIR) through submillimeter SEDs. The new results reflect an overall ~0.02 dex lower luminosity than the original IRAS values. Total stellar masses were computed by fitting stellar population synthesis models to the observed near-infrared (NIR) through ultraviolet (UV) SEDs. Mean stellar masses are found to be log(M/Msun) = 10.79+/-0.40. Star formation rates have been determined from the infrared (SFR_IR~45Msun/yr) and from the monochromatic UV luminosities (SFR_UV~1.3Msun/yr), respectively. Multiwavelength AGN indicators have be used to select putative AGN: about 60% of the ULIRGs would have been classified as an AGN by at least one of the selection criteria.
We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISE J181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of ~1000 extremely luminous W1W2-dropouts (sources faint or undetected by WISE at 3.4 and 4.6 microns and well detected at 12 or 22 microns). The WISE data and a 350 micron detection give a minimum bolometric luminosity of 3.7 x 10^13 Lsun, with ~10^14 Lsun plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate ~300 Msun/yr, accounting for < 10% of the bolometric luminosity. Strong 22 micron emission relative to 350 microns implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is ~10x above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local M_BH-bulge mass relation, the implied Eddington ratio is >~4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.
We use infrared spectroscopy and photometry to empirically define the intrinsic, thermal infrared spectral energy distribution (i.e., 6-100 um SED) of typical active galactic nuclei (i.e., 2-10 keV luminosity, Lx=10^{42}-10^{44} ergs/s AGNs). On average, the infrared SED of typical AGNs is best described as a broken power-law at <40 um that falls steeply at >40um (i.e., at far-infrared wavelengths). Despite this fall-off at long wavelengths, at least 3 of the 11 AGNs in our sample have observed SEDs that are AGN-dominated even at 60 um, demonstrating the importance of accounting for possible AGN contribution even at far-infrared wavelengths. Our results also suggest that the average intrinsic AGN 6-100 um SED gets bluer with increasing X-ray luminosity, a trend seen both within our sample and also when we compare against the intrinsic SEDs of more luminous quasars (i.e., Lx>10^{44} ergs/s). We compare our intrinsic AGN SEDs with predictions from dusty torus models and find they are more closely matched by clumpy, rather than continuous, torus models. Next, we use our intrinsic AGN SEDs to define a set of correction factors to convert either monochromatic infrared or X-ray luminosities into total intrinsic AGN infrared (i.e., 8-1000 um) luminosities. Finally, we outline a procedure that uses our newly defined intrinsic AGN infrared SEDs, in conjunction with a selection of host-galaxy templates, to fit the infrared photometry of composite galaxies and measure the AGN contribution to their total infrared output. We verify the accuracy of our SED fitting procedure by comparing our results to two independent measures of AGN contribution. Our SED fitting procedure opens up the possibility of measuring the intrinsic AGN luminosities of large numbers of galaxies with well-sampled infrared data (e.g., IRAS, ISO, Spitzer and Herschel).
We present near and mid--IR observations of a sample of Seyfert II galaxies drawn from the $12mu$m Galaxy Sample. The sample was observed in the J, H, K, L, M and N bands. Galaxy Surface Brightness Profiles are modeled using nuclear, bulge, bar (when necessary) and disk components. To check the reliability of our findings the procedure was tested using {em Spitzer/} observations of M,31. Nuclear Spectral Energy Distributions (SEDs) are determined for 34 objects, and optical spectra are presented for 38, including analysis of their stellar populations using the STARLIGHT spectral synthesis code. Emission line diagnostic-diagrams are used to discriminate between genuine AGN and HII nuclei. Combining our observations with those found in the literature, we have a total of 40 SEDs. It is found that about 40% of the SEDs are characterized by an upturn in the near-IR, which we have quantified as a NIR slope $alpha < 1$ for an SED characterized as $lambda f_{lambda} propto lambda^{alpha}$. Three objects with an HII nucleus and two Seyfert nuclei with strong contamination from a circumnuclear starburst, also show an upturn. For genuine AGN this component could be explained as emission from the accretion disk, a jet, or from a very hot dust component leaking from the central region through a clumpy obscuring structure. The presence of a very compact nuclear starburst as the origin for this NIR excess emission is not favored by our spectroscopic data for these objects.
The small grain sizes produced by Type II supernova (SN II) models in young, metal-poor galaxies make the appearance of their infrared (IR) spectral energy distribution (SED) quite different from that of nearby, older galaxies. To study this effect, we have developed a model for the evolution of dust content and the IR SED of low-metallicity, extremely young galaxies based on Hirashita et al. (2002). We find that, even in the intense ultraviolet (UV) radiation field of very young galaxies, small silicate grains are subject to stochastic heating resulting in a broad temperature distribution and substantial MIR continuum emission. Larger carbonaceous grains are in thermal equilibrium at T simeq 50 - 100K, and they also contribute to the MIR. We present the evolution of SEDs and IR extinction of very young, low-metallicity galaxies. The IR extinction curve is also shown. In the first few Myrs, the emission peaks at lambda sim 30-50um at later times dust self-absorption decreases the apparent grain temperatures, shifting the bulk of the emission into the submillimetre band. We successfully apply the model to the IR SED of a low metallicity (1/41 Z_odot) dwarf galaxy SBS0335-052. We find the SED, optical properties and extinction of the star forming region to be consistent with a very young and compact starburst. We also predict the SED of another extremely low-metallicity galaxy, I Zw 18, for future observational tests. Some prospects for future observations are discussed.