Do you want to publish a course? Click here

Quasiparticle dynamics and phonon softening in FeSe superconductors

298   0   0.0 ( 0 )
 Added by Jiunn-Yuan Lin
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quasiparticle dynamics of FeSe single crystals revealed by dual-color transient reflectivity measurements ({Delta}R/R) provides unprecedented information on Fe-based superconductors. The amplitude of fast component in {Delta}R/R clearly tells a competing scenario between spin fluctuations and superconductivity. Together with the transport measurements, the relaxation time analysis further exhibits anomalous changes at 90 K and 230 K. The former manifests a structure phase transition as well as the associated phonon softening. The latter suggests a previously overlooked phase transition or crossover in FeSe. The electron-phonon coupling constant {lambda} is found to be 0.16, identical to the value of theoretical calculations. Such a small {lambda} demonstrates an unconventional origin of superconductivity in FeSe.



rate research

Read More

316 - J. Graf , M. dAstuto , C. Jozwiak 2008
We report the first measurement of the optical phonon dispersion in optimally doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a strong softening of the Cu-O bond stretching phonon at about q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A direct comparison with angle-resolved photoemission spectroscopy measurements taken on the same sample, revealed an excellent agreement in terms of energy and momentum between the ARPES nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63 meV kink is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which corresponds exactly to the soft part of the bond stretching phonon mode. This result supports an interpretation of the ARPES kink in terms of electron-phonon coupling.
107 - Q. Wu , H. X. Zhou , Y. L. Wu 2019
Distinctive superconducting behaviors between bulk and monolayer FeSe make it challenging to obtain a unified picture of all FeSe-based superconductors. We investigate the ultrafast quasiparticle (QP) dynamics of an intercalated superconductor (Li1-xFex)OHFe1-ySe, which is a bulk crystal but shares a similar electronic structure with single-layer FeSe on SrTiO3. We obtain the electron-phonon coupling (EPC) constant {lambda}A1g (0.22 +/- 0.04), which well bridges that of bulk FeSe crystal and single-layer FeSe on SrTiO3. Moreover, we find that such a positive correlation between {lambda}A1g and superconducting Tc holds among all known FeSe-based superconductors, even in line with reported FeAs-based superconductors. Our observation indicates possible universal role of EPC in the superconductivity of all known categories of iron-based superconductors, which is a critical step towards achieving a unified superconducting mechanism for all iron-based superconductors.
We perform a systematic analysis of the influence of phonon driving on the superconducting Holstein model coupled to heat baths by studying both the transient dynamics and the nonequilibrium steady state (NESS) in the weak and strong electron-phonon coupling regimes. Our study is based on the nonequilibrium dynamical mean-field theory, and for the NESS we present a Floquet formulation adapted to electron-phonon systems. The analysis of the phonon propagator suggests that the effective attractive interaction can be strongly enhanced in a parametric resonant regime because of the Floquet side bands of phonons. While this may be expected to enhance the superconductivity (SC), our fully self-consistent calculations, which include the effects of heating and nonthermal distributions, show that the parametric phonon driving generically results in a suppression or complete melting of the SC order. In the strong coupling regime, the NESS always shows a suppression of the SC gap, the SC order parameter and the superfluid density as a result of the driving, and this tendency is most prominent at the parametric resonance. Using the real-time nonequilibrium DMFT formalism, we also study the dynamics towards the NESS, which shows that the heating effect dominates the transient dynamics, and SC is weakened by the external modulations, in particular at the parametric resonance. In the weak coupling regime, we find that the SC fluctuations above the transition temperature are generally weakened under the driving. The strongest suppression occurs again around the parametric resonances because of the efficient energy absorption.
Quasiparticle interference (QPI) provides a wealth of information relating to the electronic structure of a material. However, it is often assumed that this information is constrained to two-dimensional electronic states. Here, we show that this is not necessarily the case. For FeSe, a system dominated by surface defects, we show that it is actually all electronic states with negligible group velocity in the $z$ axis that are contained within the experimental data. By using a three-dimensional tight binding model of FeSe, fit to photoemission measurements, we directly reproduce the experimental QPI scattering dispersion, within a T-matrix formalism, by including both $k_z = 0$ and $k_z = pi$ electronic states. This result unifies both tunnelling and photoemission based experiments on FeSe and highlights the importance of $k_z$ within surface sensitive measurements of QPI.
90 - Zhi Wang , Liang Dong , Cong Xiao 2020
We construct a theory for the semiclassical dynamics of superconducting quasiparticles by following their wave-packet motion and reveal rich contents of Berry curvature effects in the phase-space spanned by position and momentum. These Berry curvatures are traced back to the characteristics of superconductivity, including the nontrivial momentum-space geometry of superconducting pairing, the real-space supercurrent, and the charge dipole of quasiparticles. The Berry-curvature effects strongly influence the spectroscopic and transport properties of superconductors, such as the local density of states and the thermal Hall conductivity. As a model illustration, we apply the theory to study the twisted bilayer graphene with a $d_{x^{2}+y^{2}}+id_{xy}$ superconducting gap function, and demonstrate Berry-curvature induced effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا