No Arabic abstract
We study the dynamics of matter waves in an effectively one-dimensional Bose-Einstein condensate in a double well potential. We consider in particular the case when one of the double wells confines excited states. Similarly to the known ground state oscillations, the states can tunnel between the wells experiencing the physics known for electrons in a Josephson junction, or be self-trapped. As the existence of dark solitons in a harmonic trap are continuations of such non-ground state excitations, one can view the Josephson-like oscillations as tunnelings of dark solitons. Numerical existence and stability analysis based on the full equation is performed, where it is shown that such tunneling can be stable. Through a numerical path following method, unstable tunneling is also obtained in different parameter regions. A coupled-mode system is derived and compared to the numerical observations. Regions of (in)stability of Josephson tunneling are discussed and highlighted. Finally, we outline an experimental scheme designed to explore such dark soliton dynamics in the laboratory.
Reflection of wave packets from downward potential steps and attractive potentials, known as a quantum reflection, has been explored for bright matter-wave solitons with the main emphasis on the possibility to trap them on top of a pedestal-shaped potential. In numerical simulations, we observed that moving solitons return from the borders of the potential and remain trapped for a sufficiently long time. The shuttle motion of the soliton is accompanied by shedding some amount of matter at each reflection from the borders of the trap, thus reducing its norm. The one- and two- soliton configurations are considered. A discontinuous jump of trajectories of colliding solitons has been discussed. The time-shift observed in a step-like decay of the moving solitons norm in the two-soliton configuration is linked to the trajectory jump phenomenon. The obtained results can be of interest for the design of new soliton experiments with Bose-Einstein condensates.
We study the dilute and ultracold unitary Bose gas, which is characterized by a universal equation of state due to the diverging s-wave scattering length, under a transverse harmonic confinement. From the hydrodynamic equations of superfluids we derive an effective one-dimensional nonpolynomial Schrodinger equation (1D NPSE) for the axial dynamics which, however, takes also into account the transverse dynamics. Finally, by solving the 1D NPSE we obtain meaningful analytical formulas for the dark (gray and black) solitons of the bosonic system.
We present the first experimental realisation of Bose-Einstein condensation in a purely magnetic double-well potential. This has been realised by combining a static Ioffe-Pritchard trap with a time orbiting potential (TOP). The double trap can be rapidly switched to a single harmonic trap of identical oscillation frequencies thus accelerating the two condensates towards each other. Furthermore, we show that time averaged potentials can be used as a means to control the radial confinement of the atoms. Manipulation of the radial confinement allows vortices and radial quadrupole oscillations to be excited.
We investigate the dynamics of two-component Bose-Josephson junction composed of atom-molecule BECs. Within the semiclassical approximation, the multi-degree of freedom of this system permits chaotic dynamics, which does not occur in single-component Bose-Josephson junctions. By investigating the level statistics of the energy spectra using the exact diagonalization method, we evaluate whether the dynamics of the system is periodic or non-periodic within the semiclassical approximation. Additionally, we compare the semiclassical and full-quantum dynamics.
We investigate dynamics of two-dimensional chiral solitons of semi-vortex (SV) and mixed-mode (MM) types in spin-orbit-coupled Bose-Einstein condensates with the Manakov nonlinearity, loaded in a dual-core (double-layer) trap. The system supports two novel manifestations of Josephson phenomenology: one in the form of persistent oscillations between SVs or MMs with opposite chiralities in the two cores, and another one demonstrating robust periodic switching (identity oscillations) between SV in one core and MM in the other, provided that the strength of the inter-core coupling exceeds a threshold value. Below the threshold, the system creates composite states, which are asymmetric with respect to the two cores, or suffer the collapse. Robustness of the chirality and identity oscillations against deviations from the Manakov nonlinearity is investigated too. These dynamical regimes are possible only in the nonlinear system. In the linear one, exact stationary and dynamical solutions for SVs and MMs of the Bessel type are found. They sustain Josephson self-oscillations in different modes, with no interconversion between them.