Do you want to publish a course? Click here

Bose-Einstein condensation in a magnetic double-well potential

103   0   0.0 ( 0 )
 Added by Wolf von Klitzing
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first experimental realisation of Bose-Einstein condensation in a purely magnetic double-well potential. This has been realised by combining a static Ioffe-Pritchard trap with a time orbiting potential (TOP). The double trap can be rapidly switched to a single harmonic trap of identical oscillation frequencies thus accelerating the two condensates towards each other. Furthermore, we show that time averaged potentials can be used as a means to control the radial confinement of the atoms. Manipulation of the radial confinement allows vortices and radial quadrupole oscillations to be excited.



rate research

Read More

We have observed Bose-Einstein condensation of an atomic gas in the (quasi-)uniform three-dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution and the anisotropic time-of-flight expansion of the condensate. The critical temperature agrees with the theoretical prediction for a uniform Bose gas. The momentum distribution of our non-condensed quantum-degenerate gas is also clearly distinct from the conventional case of a harmonically trapped sample and close to the expected distribution in a uniform system. We confirm the coherence of our condensate in a matter-wave interference experiment. Our experiments open many new possibilities for fundamental studies of many-body physics.
We model the dynamics of condensation in a bimodal trap, consisting of a large reservoir region, and a tight dimple whose depth can be controlled. Experimental investigations have found that such dimple traps provide an efficient means of achieving condensation. In our kinetic equations, we include two- and three-body processes. The two-body processes populate the dimple, and lead to loss when one of the colliding atoms is ejected from the trap. The three-body processes produce heating and loss. We explain the principal trends, give a detailed description of the dynamics, and provide quantitative predictions for timescales and condensate yields. From these simulations, we extract optimal parameters for future experiments.
148 - F. Mulansky , J. Mumford , 2011
We compare and contrast the mean-field and many-body properties of a Bose-Einstein condensate trapped in a double well potential with a single impurity atom. The mean-field solutions display a rich structure of bifurcations as parameters such as the boson-impurity interaction strength and the tilt between the two wells are varied. In particular, we study a pitchfork bifurcation in the lowest mean-field stationary solution which occurs when the boson-impurity interaction exceeds a critical magnitude. This bifurcation, which is present for both repulsive and attractive boson-impurity interactions, corresponds to the spontaneous formation of an imbalance in the number of particles between the two wells. If the boson-impurity interaction is large, the bifurcation is associated with the onset of a Schroedinger cat state in the many-body ground state. We calculate the coherence and number fluctuations between the two wells, and also the entanglement entropy between the bosons and the impurity. We find that the coherence can be greatly enhanced at the bifurcation.
Dynamics of the double-well Bose-Einstein condensate subject to energy dissipation is studied by solving a reduced one-dimensional time-dependent Gross-Pitaevskii equation numerically. We first reproduce the phase space diagram of the system without dissipation systematically, and then calculate evolutionary trajectories of dissipated systems. It is clearly shown that the dissipation can drive the system to evolve gradually from the $pi$-mode quantum macroscopic self-trapping state, a state with relatively higher energy, to the lowest energy stationary state in which particles distribute equally in the two wells. The average phase and phase distribution in each well are discussed as well. We show that the phase distribution varies slowly in each well but may exhibit abrupt changes near the barrier. This sudden change occurs at the minimum position in particle density profile. We also note that the average phase in each well varies much faster with time than the phase difference between two wells.
The realization of Bose-Einstein condensation in ultracold trapped gases has led to a revival of interest in that fascinating quantum phenomenon. This experimental achievement necessitated both extremely low temperatures and sufficiently weak interactions. Particularly in reduced spatial dimensionality even an infinitesimal interaction immediately leads to a departure to quasi-condensation. We propose a system of strongly interacting bosons which overcomes those obstacles by exhibiting a number of intriguing related features: (i) The tuning of just a single control parameter drives a transition from quasi-condensation to complete condensation, (ii) the destructive influence of strong interactions is compensated by the respective increased mobility, (iii) topology plays a crucial role since a crossover from one- to `infinite-dimensionality is simulated, (iv) a ground state gap opens which makes the condensation robust to thermal noise. Remarkably, all these features can be derived by analytical and exact numerical means despite the non-perturbative character of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا