No Arabic abstract
We investigate the dynamics of two-component Bose-Josephson junction composed of atom-molecule BECs. Within the semiclassical approximation, the multi-degree of freedom of this system permits chaotic dynamics, which does not occur in single-component Bose-Josephson junctions. By investigating the level statistics of the energy spectra using the exact diagonalization method, we evaluate whether the dynamics of the system is periodic or non-periodic within the semiclassical approximation. Additionally, we compare the semiclassical and full-quantum dynamics.
We study the dynamics of matter waves in an effectively one-dimensional Bose-Einstein condensate in a double well potential. We consider in particular the case when one of the double wells confines excited states. Similarly to the known ground state oscillations, the states can tunnel between the wells experiencing the physics known for electrons in a Josephson junction, or be self-trapped. As the existence of dark solitons in a harmonic trap are continuations of such non-ground state excitations, one can view the Josephson-like oscillations as tunnelings of dark solitons. Numerical existence and stability analysis based on the full equation is performed, where it is shown that such tunneling can be stable. Through a numerical path following method, unstable tunneling is also obtained in different parameter regions. A coupled-mode system is derived and compared to the numerical observations. Regions of (in)stability of Josephson tunneling are discussed and highlighted. Finally, we outline an experimental scheme designed to explore such dark soliton dynamics in the laboratory.
We present the first experimental realisation of Bose-Einstein condensation in a purely magnetic double-well potential. This has been realised by combining a static Ioffe-Pritchard trap with a time orbiting potential (TOP). The double trap can be rapidly switched to a single harmonic trap of identical oscillation frequencies thus accelerating the two condensates towards each other. Furthermore, we show that time averaged potentials can be used as a means to control the radial confinement of the atoms. Manipulation of the radial confinement allows vortices and radial quadrupole oscillations to be excited.
We investigate numerically parametrically driven coupled nonlinear Schrodinger equations modelling the dynamics of coupled wavefields in a periodically oscillating double-well potential. The equations describe among other things two coupled periodically-curved optical waveguides with Kerr nonlinearity or horizontally shaken Bose-Einstein condensates in a double-well magnetic trap. In particular, we study the persistence of equilibrium states of the undriven system due to the presence of the parametric drive. Using numerical continuations of periodic orbits and calculating the corresponding Floquet multipliers, we find that the drive can (de)stabilize a continuation of an equilibrium state indicated by the change of the (in)stability of the orbit. Hence, we show that parametric drives can provide a powerful control to nonlinear (optical or matter wave) field tunneling. Analytical approximations based on an averaging method are presented. Using perturbation theory the influence of the drive on the symmetry breaking bifurcation point is discussed.
A trapped-atom interferometer was demonstrated using gaseous Bose-Einstein condensates coherently split by deforming an optical single-well potential into a double-well potential. The relative phase between the two condensates was determined from the spatial phase of the matter wave interference pattern formed upon releasing the condensates from the separated potential wells. Coherent phase evolution was observed for condensates held separated by 13 $mu$m for up to 5 ms and was controlled by applying ac Stark shift potentials to either of the two separated condensates.
Ultra-cold atoms in optical lattices provide an ideal platform for exploring many-body physics of a large system arising from the coupling among a series of small identical systems whose few-body dynamics is exactly solvable. Using Landau-Zener (LZ) transition of bosonic atoms in double well optical lattices as an experimentally realizable model, we investigate such few to many body route by exploring the relation and difference between the small few-body (in one double well) and the large many-body (in double well lattice) non-equilibrium dynamics of cold atoms in optical lattices. We find the many-body coupling between double wells greatly enhances the LZ transition probability. The many-body dynamics in the double well lattice shares both similarity and difference from the few-body dynamics in one and two double wells. The sign of the on-site interaction plays a significant role on the many-body LZ transition. Various experimental signatures of the many-body LZ transition, including atom density, momentum distribution, and density-density correlation, are obtained.