Do you want to publish a course? Click here

The role of submillimetre galaxies in hierarchical galaxy formation

146   0   0.0 ( 0 )
 Added by Cedric Lacey
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the role of submillimetre galaxies (SMGs) in the galaxy formation process in the Lambda Cold Dark Matter cosmology. We use the Baugh et al. (2005) semi-analytical model, which matches the observed SMG number counts and redshift distribution by assuming a top-heavy initial mass function (IMF) in bursts triggered by galaxy mergers. We build galaxy merger trees and follow the evolution and properties of SMGs and their descendants. Our primary sample of model SMGs consists of galaxies which had 850 mu fluxes brighter than 5 mJy at some redshift z>1. Our model predicts that the present-day descendants of such SMGs cover a wide range of stellar masses ~ 10^{10} - 10^{12} Msun/h, with a median ~ 10^{11} Msun/h, and that more than 70% of these descendants are bulge-dominated. More than 50% of present day galaxies with stellar masses larger than 7 x 10^{11} Msun/h are predicted to be descendants of such SMGs. We find that although SMGs make an important contribution to the total star formation rate at z~2, the final stellar mass produced in the submillimetre phase contributes only 0.2% of the total present-day stellar mass, and 2% of the stellar mass of SMG descendants, in stark contrast to the popular picture in which the SMG phase marks the production of the bulk of the mass of present day massive ellipticals.



rate research

Read More

Establishing the stellar masses (M*), and hence specific star-formation rates (sSFRs) of submillimetre galaxies (SMGs) is crucial for determining their role in the cosmic galaxy/star formation. However, there is as yet no consensus over the typical M* of SMGs. Specifically, even for the same set of SMGs, the reported average M* have ranged over an order of magnitude, from ~5x10^10 Mo to ~5x10^11 Mo. Here we study how different methods of analysis can lead to such widely varying results. We find that, contrary to recent claims in the literature, potential contamination of IRAC 3-8 um photometry from hot dust associated with an active nucleus is not the origin of the published discrepancies in derived M*. Instead, we expose in detail how inferred M* depends on assumptions made in the photometric fitting, and quantify the individual and cumulative effects of different choices of initial mass function, different brands of evolutionary synthesis models, and different forms of assumed star-formation history. We review current observational evidence for and against these alternatives as well as clues from the hydrodynamical simulations, and conclude that, for the most justifiable choices of these model inputs, the average M* of SMGs is ~2x10^11 Mo. We also confirm that this number is perfectly reasonable in the light of the latest measurements of their dynamical masses, and the evolving M* function of the overall galaxy population. M* of this order imply that the average sSFR of SMGs is comparable to that of other star-forming galaxies at z>2, at 2-3 Gyr^-1. This supports the view that, while rare outliers may be found at any M*, most SMGs simply form the top end of the main-sequence of star-forming galaxies at these redshifts. Conversely, this argues strongly against the viewpoint that SMGs are extreme pathological objects, of little relevance in the cosmic history of star-formation.
In this study, we have carried out a detailed, statistical analysis of isolated model galaxies, taking advantage of publicly available hierarchical galaxy formation models. To select isolated galaxies, we employ 2D methods widely used in the observational literature, as well as a more stringent 3D isolation criterion that uses the full 3D-real space information. In qualitative agreement with observational results, isolated model galaxies have larger fractions of late-type, star forming galaxies with respect to randomly selected samples of galaxies with the same mass distribution. We also find that the samples of isolated model galaxies typically contain a fraction of less than 15 per cent of satellite galaxies, that reside at the outskirts of their parent haloes where the galaxy number density is low. Projection effects cause a contamination of 2D samples of about 18 per cent, while we estimate a typical completeness of 65 per cent. Our model isolated samples also include a very small (few per cent) fraction of bulge dominated galaxies (B/T > 0.8) whose bulges have been built mainly by minor mergers. Our study demonstrates that about 65-70 per cent of 2D isolated galaxies that are classified as isolated at z = 0 have indeed been completely isolated since z = 1 and only 7 per cent have had more than 3 neighbours within a comoving radius of 1 Mpc. Irrespectively of the isolation criteria, roughly 45 per cent of isolated galaxies have experienced at least one merger event in the past (most of the mergers are minor, with mass ratios between 1:4 and 1:10). The latter point validates the approximation that isolated galaxies have been mainly influenced by internal processes.
We present observations at 250, 350, and 500 um of the nearby galaxy cluster Abell 3112 (z=0.075) carried out with BLAST, the Balloon-borne Large Aperture Submillimeter Telescope. Five cluster members are individually detected as bright submillimetre sources. Their far-infrared SEDs and optical colours identify them as normal star-forming galaxies of high mass, with globally evolved stellar populations. They all have B-R colours of 1.38+/-0.08, transitional between the blue, active population and the red, evolved galaxies that dominate the cluster core. We stack to determine the mean submillimetre emission from all cluster members, which is determined to be 16.6+/-2.5, 6.1+/-1.9, and 1.5+/-1.3 mJy at 250, 350, and 500 um, respectively. Stacking analyses of the submillimetre emission of cluster members reveal trends in the mean far-infrared luminosity with respect to cluster-centric radius and Ks-band magnitude. We find that a large fraction of submillimetre emission comes from the boundary of the inner, virialized region of the cluster, at cluster-centric distances around R_500. Stacking also shows that the bulk of the submillimetre emission arises in intermediate-mass galaxies (L<L*), with Ks magnitude ~1 mag fainter than the giant ellipticals. The results and constraints obtained in this work will provide a useful reference for the forthcoming surveys to be conducted on galaxy clusters by Herschel.
115 - Han-Seek Kim 2010
The distribution of cold gas in dark matter haloes is driven by key processes in galaxy formation: gas cooling, galaxy mergers, star formation and reheating of gas by supernovae. We compare the predictions of four different galaxy formation models for the spatial distribution of cold gas. We find that satellite galaxies make little contribution to the abundance or clustering strength of cold gas selected samples, and are far less important than they are in optically selected samples. The halo occupation distribution function of present-day central galaxies with cold gas mass > 10^9 h^-1 Msun is peaked around a halo mass of ~ 10^11 h^-1 Msun, a scale that is set by the AGN suppression of gas cooling. The model predictions for the projected correlation function are in good agreement with measurements from the HI Parkes All-Sky Survey. We compare the effective volume of possible surveys with the Square Kilometre Array with those expected for a redshift survey in the near-infrared. Future redshift surveys using neutral hydrogen emission will be competitive with the most ambitious spectroscopic surveys planned in the near-infrared.
255 - Fabio Fontanot 2009
[abridged] It has been widely claimed that several lines of observational evidence point towards a downsizing (DS) of the process of galaxy formation over cosmic time. This behavior is sometimes termed anti-hierarchical, and contrasted with the bottom-up assembly of the dark matter structures in Cold Dark Matter models. In this paper we address three different kinds of observational evidence that have been described as DS: the stellar mass assembly, star formation rate and the ages of the stellar populations in local galaxies. We compare a broad compilation of available data-sets with the predictions of three different semi-analytic models of galaxy formation within the Lambda-CDM framework. In the data, we see only weak evidence at best of DS in stellar mass and in star formation rate. We find that, when observational errors on stellar mass and SFR are taken into account, the models acceptably reproduce the evolution of massive galaxies, over the entire redshift range that we consider. However, lower mass galaxies are formed too early in the models and are too passive at late times. Thus, the models do not correctly reproduce the DS trend in stellar mass or the archaeological DS, while they qualitatively reproduce the mass-dependent evolution of the SFR. We demonstrate that these discrepancies are not solely due to a poor treatment of satellite galaxies but are mainly connected to the excessively efficient formation of central galaxies in high-redshift haloes with circular velocities ~100-200 km/s. [abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا