Do you want to publish a course? Click here

The spatial distribution of cold gas in hierarchical galaxy formation models

121   0   0.0 ( 0 )
 Added by Han-Seek Kim
 Publication date 2010
  fields Physics
and research's language is English
 Authors Han-Seek Kim




Ask ChatGPT about the research

The distribution of cold gas in dark matter haloes is driven by key processes in galaxy formation: gas cooling, galaxy mergers, star formation and reheating of gas by supernovae. We compare the predictions of four different galaxy formation models for the spatial distribution of cold gas. We find that satellite galaxies make little contribution to the abundance or clustering strength of cold gas selected samples, and are far less important than they are in optically selected samples. The halo occupation distribution function of present-day central galaxies with cold gas mass > 10^9 h^-1 Msun is peaked around a halo mass of ~ 10^11 h^-1 Msun, a scale that is set by the AGN suppression of gas cooling. The model predictions for the projected correlation function are in good agreement with measurements from the HI Parkes All-Sky Survey. We compare the effective volume of possible surveys with the Square Kilometre Array with those expected for a redshift survey in the near-infrared. Future redshift surveys using neutral hydrogen emission will be competitive with the most ambitious spectroscopic surveys planned in the near-infrared.



rate research

Read More

Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and HI emission. Depending on the dust emissivity, the total dust mass is 2-5x10^6 Msun. While the neutral gas-to-dust mass ratio is extremely low (< 12-30), including the ionized gas traced by [CII] emission raises this limit to < 39-100. The dust emission follows a similar r^{1/4} profile to the stellar light and the dust to stellar mass ratio is towards the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures >= 10^4 K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.
279 - Fabio Fontanot 2009
[abridged] It has been widely claimed that several lines of observational evidence point towards a downsizing (DS) of the process of galaxy formation over cosmic time. This behavior is sometimes termed anti-hierarchical, and contrasted with the bottom-up assembly of the dark matter structures in Cold Dark Matter models. In this paper we address three different kinds of observational evidence that have been described as DS: the stellar mass assembly, star formation rate and the ages of the stellar populations in local galaxies. We compare a broad compilation of available data-sets with the predictions of three different semi-analytic models of galaxy formation within the Lambda-CDM framework. In the data, we see only weak evidence at best of DS in stellar mass and in star formation rate. We find that, when observational errors on stellar mass and SFR are taken into account, the models acceptably reproduce the evolution of massive galaxies, over the entire redshift range that we consider. However, lower mass galaxies are formed too early in the models and are too passive at late times. Thus, the models do not correctly reproduce the DS trend in stellar mass or the archaeological DS, while they qualitatively reproduce the mass-dependent evolution of the SFR. We demonstrate that these discrepancies are not solely due to a poor treatment of satellite galaxies but are mainly connected to the excessively efficient formation of central galaxies in high-redshift haloes with circular velocities ~100-200 km/s. [abridged]
We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass $m_{ u}$ and mixing parameter $sin^2(2theta)$ with active neutrinos, we focus on models with $m_{ u}=7$ keV, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider i) two resonant production models with $sin^2(2theta)=5,10^{-11}$ and $sin^2(2theta)=2,10^{-10}$, to cover the range of mixing parameter consistent with the 3.5 keV line; ii) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal Warm Dark Matter with particle mass $m_X=3$ keV. Using a semi-analytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way-like galaxies, and the global star formation history of galaxies with observations does not allow to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at $zgtrsim 6$, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the considered DM scenarios. We discuss how next observations with upcoming facilities will enable to rule out or to strongly support DM models based on sterile neutrinos.
(abridged) Here we present HI line and 20-cm radio continuum data of the nearby galaxy pair NGC1512/1510 as obtained with the Australia Telescope Compact Array. These are complemented by GALEX UV-, SINGG Halpha- and Spitzer mid-infrared images, allowing us to compare the distribution and kinematics of the neutral atomic gas with the locations and ages of the stellar clusters within the system. For the barred, double-ring galaxy NGC1512 we find a very large HI disk, about 4x its optical diameter, with two pronounced spiral/tidal arms. Both its gas distribution and the distribution of the star-forming regions are affected by gravitational interaction with the neighbouring blue compact dwarf galaxy NGC1510. The two most distant HI clumps, at radii of about 80 kpc, show signs of star formation and are likely tidal dwarf galaxies. Star formation in the outer disk of NGC1512 is revealed by deep optical- and two-color ultraviolet images. Using the latter we determine the properties of about 200 stellar clusters and explore their correlation with dense HI clumps in the even larger 2XHI disk. The multi-wavelength analysis of the NGC1512/1510 system, which is probably in the first stages of a minor merger having started about 400 Myr ago, links stellar and gaseous galaxy properties on scales from one to 100 kpc.
We present the Star Formation History (SFH) and the age-metallicity relation (AMR) in three fields of the Fornax dwarf spheroidal galaxy. They sample a region spanning from the centre of the galaxy to beyond one core radius, which allows studying galactocentric gradients. In all the cases, we found stars as old as 12 Gyr, together with intermediate-age and young stellar populations. The last star formation events, as young as 1 Gyr old, are mainly located in the central region, which may indicate that the gas reservoir in the outer parts of the galaxy would have been exhausted earlier than in the centre or removed by tidal interactions. The AMR is smoothly increasing in the three analyzed regions and similar to each other, indicating that no significant metallicity gradient is apparent within and around the core radius of Fornax. No significant traces of global UV-reionization or local SNe feedback are appreciated in the early SFH of Fornax. Our study is based on FORS1@VLT photometry as deep as I~24.5 and the IAC-star/IAC-pop/MinnIAC suite of codes for the determination of the SFH in resolved stellar populations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا