Do you want to publish a course? Click here

Isolated galaxies in hierarchical galaxy formation models - present-day properties and environmental histories

135   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study, we have carried out a detailed, statistical analysis of isolated model galaxies, taking advantage of publicly available hierarchical galaxy formation models. To select isolated galaxies, we employ 2D methods widely used in the observational literature, as well as a more stringent 3D isolation criterion that uses the full 3D-real space information. In qualitative agreement with observational results, isolated model galaxies have larger fractions of late-type, star forming galaxies with respect to randomly selected samples of galaxies with the same mass distribution. We also find that the samples of isolated model galaxies typically contain a fraction of less than 15 per cent of satellite galaxies, that reside at the outskirts of their parent haloes where the galaxy number density is low. Projection effects cause a contamination of 2D samples of about 18 per cent, while we estimate a typical completeness of 65 per cent. Our model isolated samples also include a very small (few per cent) fraction of bulge dominated galaxies (B/T > 0.8) whose bulges have been built mainly by minor mergers. Our study demonstrates that about 65-70 per cent of 2D isolated galaxies that are classified as isolated at z = 0 have indeed been completely isolated since z = 1 and only 7 per cent have had more than 3 neighbours within a comoving radius of 1 Mpc. Irrespectively of the isolation criteria, roughly 45 per cent of isolated galaxies have experienced at least one merger event in the past (most of the mergers are minor, with mass ratios between 1:4 and 1:10). The latter point validates the approximation that isolated galaxies have been mainly influenced by internal processes.



rate research

Read More

We examine the reionization history of present-day galaxies by explicitly tracing the building blocks of halos from the Cosmic Reionization On Computers project. We track dark matter particles that belong to $z=0$ halos to trace the neutral fractions at corresponding positions during rapid global reionization. The resulting particle reionization histories allow us to explore different definitions of a halos reionization redshift and to account for the neutral content of the interstellar medium. Consistent with previous work, we find a systematic trend of reionization redshift with mass - present day halos with higher masses have earlier reionization times. Finally, we quantify the spread of reionization times within each halo, which also has a mass dependence.
242 - Reynier Peletier 2009
Although there are many more stellar population studies of elliptical and lenticular galaxies, studies of spiral galaxies are catching up, due to higher signal to noise data on one hand, and better analysis methods on the other. Here I start by discussing some modern methods of analyzing integrated spectra of spiral galaxies, and comparing them with traditional methods. I then discuss some recent developments in our understanding of the stellar content of spiral galaxies, and their associated dust content. I discuss star formation histories, radial stellar population gradients, and stellar populations in sigma drops.
We compare state-of-the-art semi-analytic models of galaxy formation as well as advanced sub-halo abundance matching models with a large sample of early-type galaxies from SDSS at z < 0.3. We focus our attention on the dependence of median sizes of central galaxies on host halo mass. The data do not show any difference in the structural properties of early-type galaxies with environment, at fixed stellar mass. All hierarchical models considered in this work instead tend to predict a moderate to strong environmental dependence, with the median size increasing by a factor of about 1.5-3 when moving from low to high mass host haloes. At face value the discrepancy with the data is highly significant, especially at the cluster scale, for haloes above log Mhalo > 14. The convolution with (correlated) observational errors reduces some of the tension. Despite the observational uncertainties, the data tend to disfavour hierarchical models characterized by a relevant contribution of disc instabilities to the formation of spheroids, strong gas dissipation in (major) mergers, short dynamical friction timescales, and very short quenching timescales in infalling satellites. We also discuss a variety of additional related issues, such as the slope and scatter in the local size-stellar mass relation, the fraction of gas in local early-type galaxies, and the general predictions on satellite galaxies.
Todays galaxies experienced cosmic reionization at different times in different locations. For the first time, reionization ($50%$ ionized) redshifts, $z_R$, at the location of their progenitors are derived from new, fully-coupled radiation-hydrodynamics simulation of galaxy formation and reionization at $z > 6$, matched to N-body simulation to z = 0. Constrained initial conditions were chosen to form the well-known structures of the local universe, including the Local Group and Virgo, in a (91 Mpc)$^3$ volume large enough to model both global and local reionization. Reionization simulation CoDa I-AMR, by CPU-GPU code EMMA, used (2048)$^3$ particles and (2048)$^3$ initial cells, adaptively-refined, while N-body simulation CoDa I-DM2048, by Gadget2, used (2048)$^3$ particles, to find reionization times for all galaxies at z = 0 with masses $M(z=0)ge 10^8 M_odot$. Galaxies with $M(z=0) gtrsim 10^{11} M_odot$ reionized earlier than the universe as a whole, by up to $sim$ 500 Myrs, with significant scatter. For Milky-Way-like galaxies, $z_R$ ranged from 8 to 15. Galaxies with $M(z=0) lesssim 10^{11} M_odot$ typically reionized as late or later than globally-averaged $50%$ reionization at $langle z_Rrangle =7.8$, in neighborhoods where reionization was completed by external radiation. The spread of reionization times within galaxies was sometimes as large as the galaxy-to-galaxy scatter. The Milky Way and M31 reionized earlier than global reionization but later than typical for their mass, neither dominated by external radiation. Their most massive progenitors at $z>6$ had $z_R$ = 9.8 (MW) and 11 (M31), while their total masses had $z_R$ = 8.2 (both).
146 - Juan E. Gonzalez 2010
We study the role of submillimetre galaxies (SMGs) in the galaxy formation process in the Lambda Cold Dark Matter cosmology. We use the Baugh et al. (2005) semi-analytical model, which matches the observed SMG number counts and redshift distribution by assuming a top-heavy initial mass function (IMF) in bursts triggered by galaxy mergers. We build galaxy merger trees and follow the evolution and properties of SMGs and their descendants. Our primary sample of model SMGs consists of galaxies which had 850 mu fluxes brighter than 5 mJy at some redshift z>1. Our model predicts that the present-day descendants of such SMGs cover a wide range of stellar masses ~ 10^{10} - 10^{12} Msun/h, with a median ~ 10^{11} Msun/h, and that more than 70% of these descendants are bulge-dominated. More than 50% of present day galaxies with stellar masses larger than 7 x 10^{11} Msun/h are predicted to be descendants of such SMGs. We find that although SMGs make an important contribution to the total star formation rate at z~2, the final stellar mass produced in the submillimetre phase contributes only 0.2% of the total present-day stellar mass, and 2% of the stellar mass of SMG descendants, in stark contrast to the popular picture in which the SMG phase marks the production of the bulk of the mass of present day massive ellipticals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا