Do you want to publish a course? Click here

Tidally induced brown dwarf and planet formation in circumstellar discs

121   0   0.0 ( 0 )
 Added by Ingo Thies
 Publication date 2010
  fields Physics
and research's language is English
 Authors Ingo Thies




Ask ChatGPT about the research

Most stars are born in clusters and the resulting gravitational interactions between cluster members may significantly affect the evolution of circumstellar discs and therefore the formation of planets and brown dwarfs. Recent findings suggest that tidal perturbations of typical circumstellar discs due to close encounters may inhibit rather than trigger disc fragmentation and so would seem to rule out planet formation by external tidal stimuli. However, the disc models in these calculations were restricted to disc radii of 40 AU and disc masses below 0.1 M_sun. Here we show that even modest encounters can trigger fragmentation around 100 AU in the sorts of massive (~0.5 M_sun), extended (>=100 AU) discs that are observed around young stars. Tidal perturbation alone can do this, no disc-disc collision is required. We also show that very-low-mass binary systems can form through the interaction of objects in the disc. In our computations, otherwise non-fragmenting massive discs, once perturbed, fragment into several objects between about 0.01 and 0.1 M_sun, i.e., over the whole brown dwarf mass range. Typically these orbit on highly eccentric orbits or are even ejected. While probably not suitable for the formation of Jupiter- or Neptune-type planets, our scenario provides a possible formation mechanism for brown dwarfs and very massive planets which, interestingly, leads to a mass distribution consistent with the canonical substellar IMF. As a minor outcome, a possible explanation for the origin of misaligned extrasolar planetary systems is discussed.



rate research

Read More

Understanding the dominant brown dwarf and giant planet formation processes, and finding out whether these processes rely on completely different mechanisms or share common channels represents one of the major challenges of astronomy and remains the subject of heated debates. It is the aim of this review to summarize the latest developments in this field and to address the issue of origin by confronting different brown dwarf and giant planet formation scenarios to presently available observational constraints. As examined in the review, if objects are classified as Brown Dwarfs or Giant Planets on the basis of their formation mechanism, it has now become clear that their mass domains overlap and that there is no mass limit between these two distinct populations. Furthermore, while there is increasing observational evidence for the existence of non-deuterium burning brown dwarfs, some giant planets, characterized by a significantly metal enriched composition, might be massive enough to ignite deuterium burning in their core. Deuterium burning (or lack of) thus plays no role in either brown dwarf or giant planet formation. Consequently, we argue that the IAU definition to distinguish these two populations has no physical justification and brings scientific confusion. In contrast, brown dwarfs and giant planets might bear some imprints of their formation mechanism, notably in their mean density and in the physical properties of their atmosphere. Future direct imaging surveys will undoubtedly provide crucial information and perhaps provide some clear observational diagnostics to unambiguously distinguish these different astrophysical objects.
The physical properties of brown dwarf discs, in terms of their shapes and sizes, are still largely unexplored by observations. To what extent brown dwarf discs are similar to scaled-down T Tauri discs is currently unknown, and this work is a step towards establishing a relationship through the eventual modelling of future observations. We use observations of the brown dwarf disc $rho$ Oph 102 to infer a fiducial model around which we build a small grid of brown dwarf disc models, in order to model the CO, HCN, and HCO+ line fluxes and the chemistry which drives their abundances. These are the first brown dwarf models to be published which relate detailed, 2D radiation thermochemical disc models to observational data. We predict that moderately extended ALMA antenna configurations will spatially resolve CO line emission around brown dwarf discs, and that HCN and HCO+ will be detectable in integrated flux, following our conclusion that the flux ratios of these molecules to CO emission are comparable to that of T Tauri discs. These molecules have not yet been observed in sub-mm wavelengths in a brown dwarf disc, yet they are crucial tracers of the warm surface-layer gas and of ionization in the outer parts of the disc. We present the prediction that if the physical and chemical processes in brown dwarf discs are similar to those that occur in T Tauri discs -- as our models suggest -- then the same diagnostics that are used for T Tauri discs can be used for brown dwarf discs (such as HCN and HCO+ lines that have not yet been observed in the sub-mm), and that these lines should be observable with ALMA. Through future observations, either confirmation (or refutation) of these ideas about brown dwarf disc chemistry will have strong implications for our understanding of disc chemistry, structure, and subsequent planet formation in brown dwarf discs.
69 - D. Apai 2005
The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micron-sized dust grains accompanied by dust settling toward the disk mid-plane. Here we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.
309 - Y. K. Jung , A. Udalski , T. Sumi 2014
We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{rm max}sim 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components of $q = 0.13$ and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are $M_{1} = 0.096 pm 0.013~M_{odot}$ and $M_{2} = 0.012 pm 0.002~M_{odot}$, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is $3.04 pm 0.31~{rm kpc}$ and the projected separation between the lens components is $0.80 pm 0.08~{rm AU}$.
We now have several observational examples of misaligned broken protoplanetary discs, where the disc inner regions are strongly misaligned with respect to the outer disc. Current models suggest that this disc structure can be generated with an internal misaligned companion (stellar or planetary), but the occurrence rate of these currently unobserved companions remains unknown. Here we explore whether a strong misalignment between the inner and outer disc can be formed without such a companion. We consider a disc that has an existing gap --- essentially separating the disc into two regions --- and use a flyby to disturb the discs, leading to a misalignment. Despite considering the most optimistic parameters for this scenario, we find maximum misalignments between the inner and outer disc of $sim$45$^{circ}$ and that these misalignments are short-lived. We thus conclude that the currently observed misaligned discs must harbour internal, misaligned companions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا