Do you want to publish a course? Click here

OGLE-2013-BLG-0102LA,B: Microlensing binary with components at star/brown-dwarf and brown-dwarf/planet boundaries

300   0   0.0 ( 0 )
 Added by Cheongho Han
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{rm max}sim 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components of $q = 0.13$ and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are $M_{1} = 0.096 pm 0.013~M_{odot}$ and $M_{2} = 0.012 pm 0.002~M_{odot}$, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is $3.04 pm 0.31~{rm kpc}$ and the projected separation between the lens components is $0.80 pm 0.08~{rm AU}$.



rate research

Read More

We report the discovery, via the microlensing method, of a new very-low-mass binary system. By combining measurements from Earth and from the Spitzer telescope in Earth-trailing orbit, we are able to measure the microlensing parallax of the event, and find that the lens likely consists of an $(12.0 pm 0.6) M_{rm J}$ + $(15.7 pm 1.5) M_{rm J}$ super-Jupiter / brown-dwarf pair. The binary is located at a distance of $(3.08 pm 0.18)$ kpc in the Galactic Plane, and the components have a projected separation of $(0.43 pm 0.03)$ AU. Two alternative solutions with much lower likelihoods are also discussed, an 8- and 6-$M_{rm J}$ model and a 90- and 70-$M_{rm J}$ model. Although disfavored at the 3-$sigma$ and 5-$sigma$ levels, these alternatives cannot be rejected entirely. We show how the more-massive of these models could be tested with future direct imaging.
69 - C. Han , A. Udalski , T. Sumi 2017
We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to detection of both finite-source and microlens-parallax effects, we are able to measure both the masses $M_1sim 0.05 M_odot$, $M_2sim 0.01 M_odot$, and distance $D_{rm L} sim 4.5$ kpc, as well as the projected separation $a_perp sim 0.33$ au. This is the third brown-dwarf binary detected using the microlensing method, demonstrating the usefulness of microlensing in detecting field brown-dwarf binaries with separations less than 1 au.
We present the analysis of the binary-lens microlensing event OGLE-2013-BLG-0911. The best-fit solutions indicate the binary mass ratio of q~0.03 which differs from that reported in Shvartzvald+2016. The event suffers from the well-known close/wide degeneracy, resulting in two groups of solutions for the projected separation normalized by the Einstein radius of s~0.15 or s~7. The finite source and the parallax observations allow us to measure the lens physical parameters. The lens system is an M-dwarf orbited by a massive Jupiter companion at very close (M_{host}=0.30^{+0.08}_{-0.06} M_{Sun}, M_{comp}=10.1^{+2.9}_{-2.2} M_{Jup}, a_{exp}=0.40^{+0.05}_{-0.04} au) or wide (M_{host}=0.28^{+0.10}_{-0.08} M_{Sun}, M_{comp}=9.9^{+3.8}_{-3.5}M_{Jup}, a_{exp}=18.0^{+3.2}_{-3.2} au) separation. Although the mass ratio is slightly above the planet-brown dwarf (BD) mass-ratio boundary of q=0.03 which is generally used, the median physical mass of the companion is slightly below the planet-BD mass boundary of 13M_{Jup}. It is likely that the formation mechanisms for BDs and planets are different and the objects near the boundaries could have been formed by either mechanism. It is important to probe the distribution of such companions with masses of ~13M_{Jup} in order to statistically constrain the formation theories for both BDs and massive planets. In particular, the microlensing method is able to probe the distribution around low-mass M-dwarfs and even BDs which is challenging for other exoplanet detection methods.
We present an analysis of microlensing event OGLE-2016-BLG-0693, based on the survey-only microlensing observations by the OGLE and KMTNet groups. In order to analyze the light curve, we consider the effects of parallax, orbital motion, and baseline slope, and also refine the result using a Galactic model prior. From the microlensing analysis, we find that the event is a binary composed of a low-mass brown dwarf 49+-20 M_J companion and a K- or G-dwarf host, which lies at a distance 5.0+-0.6 kpc toward the Galactic bulge. The projected separation between the brown dwarf and its host star is less than 5 AU, and thus it is likely that the brown dwarf companion is located in the brown dwarf desert.
Understanding the dominant brown dwarf and giant planet formation processes, and finding out whether these processes rely on completely different mechanisms or share common channels represents one of the major challenges of astronomy and remains the subject of heated debates. It is the aim of this review to summarize the latest developments in this field and to address the issue of origin by confronting different brown dwarf and giant planet formation scenarios to presently available observational constraints. As examined in the review, if objects are classified as Brown Dwarfs or Giant Planets on the basis of their formation mechanism, it has now become clear that their mass domains overlap and that there is no mass limit between these two distinct populations. Furthermore, while there is increasing observational evidence for the existence of non-deuterium burning brown dwarfs, some giant planets, characterized by a significantly metal enriched composition, might be massive enough to ignite deuterium burning in their core. Deuterium burning (or lack of) thus plays no role in either brown dwarf or giant planet formation. Consequently, we argue that the IAU definition to distinguish these two populations has no physical justification and brings scientific confusion. In contrast, brown dwarfs and giant planets might bear some imprints of their formation mechanism, notably in their mean density and in the physical properties of their atmosphere. Future direct imaging surveys will undoubtedly provide crucial information and perhaps provide some clear observational diagnostics to unambiguously distinguish these different astrophysical objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا