Do you want to publish a course? Click here

Mapping the ionised gas around the luminous QSO HE 1029-1401: Evidence for minor merger events?

117   0   0.0 ( 0 )
 Added by Bernd Husemann
 Publication date 2010
  fields Physics
and research's language is English
 Authors B. Husemann




Ask ChatGPT about the research

We present VIMOS integral field spectroscopy of the brightest radio-quiet QSO on the southern sky HE 1029-1401 at a redshift of z=0.086. Standard decomposition techniques for broad-band imaging are extended to integral field data in order to deblend the QSO and host emission. We perform a tentative analysis of the stellar continuum finding a young stellar population (<100Myr) or a featureless continuum embedded in an old stellar population (10Gyr) typical for a massive elliptical galaxy. The stellar velocity dispersion of sigma_*=320pm90 km/s and the estimated black hole mass log(M_BH/M_sun)=8.7pm0.3 are consistent with the local M_BH-sigma_* relation within the errors. For the first time we map the two-dimensional ionised gas distribution and the gas velocity field around HE 1029-1401. While the stellar host morphology is purely elliptical we find a highly structured distribution of ionised gas out to 16 kpc from the QSO. The gas is highly ionised solely by the QSO radiation and has a significantly lower metallicity than would be expected for the stellar mass of the host, indicating an external origin of the gas most likely due to minor mergers. We find a rotating gas disc around the QSO and a dispersion-dominated non-rotating gas component within the central 3 kpc. At larger distances the velocity field is heavily disturbed, which could be interpreted as another signature of past minor merger events. Alternatively, the arc-like structure seen in the ionised gas might also be indicative of a large-scale expanding bubble, centred on and possibly driven by the active nucleus.



rate research

Read More

256 - P.Schady , T.Kruehler (1 2010
There is considerable discrepancy between the amount of X-ray absorption and that inferred from optical (rest frame UV) as measured along gamma-ray burst (GRB) sight lines, with the former being typically an order of magnitude higher than what would be expected from the measurement of neutral element species via optical absorption line spectroscopy. We explore this missing gas problem by using X-ray and optical measurements in a sample of 29 z=0.7-6.3 GRBs from both spectroscopic data and the afterglow broadband spectral energy distributions. The low ionisation species detected in the UV are associated with the neutral interstellar medium in the GRB host galaxy, while soft X-ray absorption, which is weakly dependent on the ionisation state of the gas, provides a probe of the total column of gas along the sight line. After careful consideration of any systematic effects, we find that the neutral gas consists of less than ~10% of the total gas, and this limit decreases with the more ionised that the X-ray absorbing gas is, which in our spectral fits is assumed to be neutral. Only a very small fraction of this ionised gas, however, is detected in UV absorption lines with ionisation potentials up to ~200eV (i.e. SiIV, CIV, NV, OVI), which leaves us to postulate that the X-ray excess is due to ultra-highly-ionised, dense gas in the GRB vicinity.
110 - Lian Tao , Hua Feng , Yue Shen 2017
PHL 6625 is a luminous quasi-stellar object (QSO) at z = 0.3954 located behind the nearby galaxy NGC 247 (z = 0.0005). Hubble Space Telescope (HST) observations revealed an arc structure associated with it. We report on spectroscopic observations with the Very Large Telescope (VLT) and multiwavelength observations from the radio to the X-ray band for the system, suggesting that PHL 6625 and the arc are a close pair of merging galaxies, instead of a strong gravitational lens system. The QSO host galaxy is estimated to be (4-28) x 10^10 M_sun, and the mass of the companion galaxy of is estimated to be M_* = (6.8 +/- 2.4) x 10^9 M_sun, suggesting that this is a minor merger system. The QSO displays typical broad emission lines, from which a black hole mass of about (2-5) x 10^8 M_sun and an Eddington ratio of about 0.01-0.05 can be inferred. The system represents an interesting and rare case where a QSO is associated with an ongoing minor merger, analogous to Arp 142.
Numerical simulations of minor mergers, typically having mass ratios greater than 3:1, predict little enhancement in the global star formation activity. However, these models also predict that the satellite galaxy is more susceptible to the effects of the interaction than the primary. We use optical integral field spectroscopy and deep optical imaging to study the NGC7771+NGC7770 interacting system (~10:1 stellar mass ratio) to test these predictions. We find that the satellite galaxy NGC7770 is currently experiencing a galaxy-wide starburst with most of the optical light being from young and post-starburst stellar populations(<1Gyr). This galaxy lies off of the local star-forming sequence for composite galaxies with an enhanced integrated specific star formation rate. We also detect in the outskirts of NGC7770 Halpha emitting gas filaments. This gas appears to have been stripped from one of the two galaxies and is being excited by shocks. All these results are consistent with a minor-merger induced episode(s) of star formation in NGC7770 after the first close passage. Such effects are not observed on the primary galaxy NGC7771.
141 - Ichi Tanaka , Masafumi Yagi , 2017
Deep optical imaging with both Hyper Suprime-Cam and Suprime-Cam on the 8.2 m Subaru Telescope reveals a number of outer faint structures around the archetypical Seyfert galaxy NGC 1068 (M 77). We find three ultra diffuse objects (UDOs) around NGC 1068. Since these UDOs are located within the projected distance of 45 kpc from the center of NGC 1068, they appear to be associated with NGC 1068. Hereafter, we call them UDO-SW, UDO-NE, and UDO-SE where UDO = Ultra Diffuse Object, SW = south west, NE = north west, and SE = south east; note that UDO-SE was already found in the SDSS Stripe 82 data. Among them, both UDO-NE and UDO-SW appear to show a loop or stream structure around the main body of NGC 1068, providing evidence for the physical connection to NGC 1068. We consider that UDO-SE may be a tidal dwarf galaxy. We also find another UDO-like object that is 2 magnitudes fainter and smaller by a factor of 3 to 5 than those of the three UDOs. This object may belong to a class of low surface brightness galaxy. Since this object is located along the line connecting UDO-NE and UDO-SW, it is suggested that this object is related to the past interaction event that formed the loop by UDO-NE and UDO-SW, thus implying the physical connection to NGC 1068. Another newly-discovered feature is an asymmetric outer one-arm structure emanated from the western edge of the outermost disk of NGC 1068 together with a ripple-like structure at the opposite side. These structures are expected to arise in a late phase of a minor merger according to published numerical simulations of minor mergers. All these lines of evidence show that NGC 1068 experienced a minor merger several billions years ago. We then discuss the minor-merger driven triggering of nuclear activity in the case of NGC 1068.
We present a measurement of the correlation function between luminous red galaxies and cool gas traced by Mg II lambda lambda 2796, 2803 absorption, on scales ranging from about 30 kpc to 20 Mpc. The measurement is based on cross-correlating the positions of about one million red galaxies at z~0.5 and the flux decrements induced in the spectra of about 10^5 background quasars from the Sloan Digital Sky Survey. We find that: (i) This galaxy-gas correlation reveals a change of slope on scales of about 1 Mpc, consistent with the expected transition from a dark matter halo dominated environment to a regime where clustering is dominated by halo-halo correlations. Assuming that, on average, the distribution of Mg II gas follows that of dark matter up to a gas-to-mass ratio, we find the standard halo model to provide an accurate description of the gas distribution over three orders of magnitude in scale. Within this framework we estimate the average host halo mass of luminous red galaxies to be about 10^{13.5} M_solar, in agreement with other methods. We also find the Mg II gas-to-mass ratio around LRGs to be consistent with the cosmic value estimated on Mpc scales. Combining our galaxy-gas correlation and the galaxy-mass correlation function from galaxy-galaxy lensing analyses we can directly measure the Mg II gas-to-mass ratio as a function of scale and reach the same conclusion. (ii) From line-width estimates, we show that the velocity dispersion of the gas clouds also shows the expected 1- and 2-halo behaviors. On large scales the gas distribution follows the Hubble flow, whereas on small scales we observe the velocity dispersion of the Mg II gas clouds to be lower than that of collisionless dark matter particles within their host halo. This is in line with the fact that cool clouds are subject to the pressure of the virialized hot gas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا