No Arabic abstract
Deep optical imaging with both Hyper Suprime-Cam and Suprime-Cam on the 8.2 m Subaru Telescope reveals a number of outer faint structures around the archetypical Seyfert galaxy NGC 1068 (M 77). We find three ultra diffuse objects (UDOs) around NGC 1068. Since these UDOs are located within the projected distance of 45 kpc from the center of NGC 1068, they appear to be associated with NGC 1068. Hereafter, we call them UDO-SW, UDO-NE, and UDO-SE where UDO = Ultra Diffuse Object, SW = south west, NE = north west, and SE = south east; note that UDO-SE was already found in the SDSS Stripe 82 data. Among them, both UDO-NE and UDO-SW appear to show a loop or stream structure around the main body of NGC 1068, providing evidence for the physical connection to NGC 1068. We consider that UDO-SE may be a tidal dwarf galaxy. We also find another UDO-like object that is 2 magnitudes fainter and smaller by a factor of 3 to 5 than those of the three UDOs. This object may belong to a class of low surface brightness galaxy. Since this object is located along the line connecting UDO-NE and UDO-SW, it is suggested that this object is related to the past interaction event that formed the loop by UDO-NE and UDO-SW, thus implying the physical connection to NGC 1068. Another newly-discovered feature is an asymmetric outer one-arm structure emanated from the western edge of the outermost disk of NGC 1068 together with a ripple-like structure at the opposite side. These structures are expected to arise in a late phase of a minor merger according to published numerical simulations of minor mergers. All these lines of evidence show that NGC 1068 experienced a minor merger several billions years ago. We then discuss the minor-merger driven triggering of nuclear activity in the case of NGC 1068.
We report on a detailed morphological and kinematic study of the isolated non-barred nearby Seyfert 2 galaxy NGC 2110. We combine Integral Field optical spectroscopy, with long-slit and WFPC2 imaging available in the HST archive to investigate the fueling mechanism in this galaxy. Previous work (Wilson & Baldwin 1985) concluded that the kinematic center of the galaxy is displaced ~220 pc from the apparent mass center of the galaxy, and the ionized gas follows a remarkably normal rotation curve. Our analysis based on the stellar kinematics, 2D ionized gas velocity field and dispersion velocity, and high spatial resolution morphology at V, I and Halpha reveals that: 1) The kinematic center of NGC 2110 is at the nucleus of the galaxy. 2) The ionized gas is not in pure rotational motion. 3) The morphology of the 2D distribution of the emission line widths suggests the presence of a minor axis galactic outflow. 4) The nucleus is blue-shifted with respect to the stellar systemic velocity, suggesting the NLR gas is out-flowing due to the interaction with the radio jet. 5) The ionized gas is red-shifted ~100 km/s over the corresponding rotational motion south of the nucleus, and 240 km/s with respect to the nuclear stellar systemic velocity. This velocity is coincident with the HI red-shifted absorption velocity detected by Gallimore et al (1999). We discuss the possibility that the kinematics of the south ionized gas could be perturbed by the collision with a small satellite that impacted on NGC 2110 close to the center with a highly inclined orbit. Additional support for this interpretation are the radial dust lanes and tidal debris detected in the V un-sharp masked image. We suggest that a minor-merger may have driven the nuclear activity in NGC 2110.
We present the discovery of a triplet of emission-line nuclei in the disturbed disk galaxy NGC 3341, based on archival data from the Sloan Digital Sky Survey and new observations from the Keck Observatory. This galaxy contains two offset nuclei within or projected against its disk, at projected distances of 5.1 and 8.4 kpc from its primary nucleus and at radial velocity separation of less than 200 km/s from the primary. These appear to be either dwarf ellipticals or the bulges of low-mass spirals whose disks have already been stripped off while merging into the primary galaxy. The inner offset nucleus has a Seyfert 2 spectrum and a stellar velocity dispersion of 70+/-7 km/s. The outer offset nucleus has very weak emission lines consistent with a LINER classification, and the primary nucleus has an emission-line spectrum close to the boundary between LINER/HII composite systems and HII nuclei; both may contain accreting massive black holes, but the optical classifications alone are ambiguous. The detection of an offset active nucleus in NGC 3341 provides a strong suggestion that black hole accretion episodes during minor mergers can be triggered in the nuclei of dwarf secondary galaxies as well as in the primary.
PHL 6625 is a luminous quasi-stellar object (QSO) at z = 0.3954 located behind the nearby galaxy NGC 247 (z = 0.0005). Hubble Space Telescope (HST) observations revealed an arc structure associated with it. We report on spectroscopic observations with the Very Large Telescope (VLT) and multiwavelength observations from the radio to the X-ray band for the system, suggesting that PHL 6625 and the arc are a close pair of merging galaxies, instead of a strong gravitational lens system. The QSO host galaxy is estimated to be (4-28) x 10^10 M_sun, and the mass of the companion galaxy of is estimated to be M_* = (6.8 +/- 2.4) x 10^9 M_sun, suggesting that this is a minor merger system. The QSO displays typical broad emission lines, from which a black hole mass of about (2-5) x 10^8 M_sun and an Eddington ratio of about 0.01-0.05 can be inferred. The system represents an interesting and rare case where a QSO is associated with an ongoing minor merger, analogous to Arp 142.
We use the full broad-band XMM-Newton EPIC data to examine the X-ray spectrum of the nearby Seyfert 2 galaxy NGC 1068, previously shown to be complex with the X-ray continuum being a sum of components reflected/scattered from cold (neutral) and warm (ionised) matter, together with associated emission line spectra. We quantify the neutral and ionised reflectors in terms of the luminosity of the hidden nucleus. Both are relatively weak, a result we interpret on the Unified Seyfert Model by a near side-on view to the putative torus, reducing the visibility of the illuminated inner surface of the torus (the cold reflector), and part of the ionised outflow. A high inclination in NGC 1068 also provides a natural explanation for the large (Compton-thick) absorbing column in the line-of-sight to the nucleus. The emission line fluxes are consistent with the strength of the neutral and ionised continuum components, supporting the robustness of the spectral model.
Numerical simulations of minor mergers predict little enhancement in the global star formation activity. However, it is still unclear the impact they have on the chemical state of the whole galaxy and on the mass build-up in the galaxy bulge and disc. We present a two-dimensional analysis of NCG 3310, currently undergoing an intense starburst likely caused by a recent minor interaction, using data from the PPAK Integral Field Spectroscopy (IFS) Nearby Galaxies Survey (PINGS). With data from a large sample of about a hundred HII regions identified throughout the disc and spiral arms we derive, using strong-line metallicity indicators and direct derivations, a rather flat gaseous abundance gradient. Thus, metal mixing processes occurred, as in observed galaxy interactions. Spectra from PINGS data and additional multiwavelength imaging were used to perform a spectral energy distribution fitting to the stellar emission and a photoionization modelling of the nebulae. The ionizing stellar population is characterized by single populations with a narrow age range (2.5-5 Myr) and a broad range of masses ($10^4-6times10^6 M_odot$). The effect of dust grains in the nebulae is important, indicating that 25-70% of the ultraviolet photons can be absorbed by dust. The ionizing stellar population within the HII regions represents typically a few percent of the total stellar mass. This ratio, a proxy to the specific star formation rate, presents a flat or negative radial gradient. Therefore, minor interactions may indeed play an important role in the mass build-up of the bulge.