Do you want to publish a course? Click here

Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit

162   0   0.0 ( 0 )
 Added by Leonardo DiCarlo
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Traditionally, quantum entanglement has played a central role in foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can exhibit results at odds with classical behavior. These discrepancies increase exponentially with the number of entangled particles. When entanglement is extended from just two quantum bits (qubits) to three, the incompatibilities between classical and quantum correlation properties can change from a violation of inequalities involving statistical averages to sign differences in deterministic observations. With the ample confirmation of quantum mechanical predictions by experiments, entanglement has evolved from a philosophical conundrum to a key resource for quantum-based technologies, like quantum cryptography and computation. In particular, maximal entanglement of more than two qubits is crucial to the implementation of quantum error correction protocols. While entanglement of up to 3, 5, and 8 qubits has been demonstrated among spins, photons, and ions, respectively, entanglement in engineered solid-state systems has been limited to two qubits. Here, we demonstrate three-qubit entanglement in a superconducting circuit, creating Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88%, measured with quantum state tomography. Several entanglement witnesses show violation of bi-separable bounds by 830pm80%. Our entangling sequence realizes the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of encoding, decoding and error-correcting steps in a feedback loop will be the next milestone for quantum computing with integrated circuits.



rate research

Read More

In this book chapter we analyze the high excitation nonlinear response of the Jaynes-Cummings model in quantum optics when the qubit and cavity are strongly coupled. We focus on the parameter ranges appropriate for transmon qubits in the circuit quantum electrodynamics architecture, where the system behaves essentially as a nonlinear quantum oscillator and we analyze the quantum and semi-classical dynamics. One of the central motivations is that under strong excitation tones, the nonlinear response can lead to qubit quantum state discrimination and we present initial results for the cases when the qubit and cavity are on resonance or far off-resonance (dispersive).
We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measurement strength and operator. The tradeoff between measurement strength and qubit back-action is characterized through the distortion of a qubit Rabi oscillation imposed by ancilla measurement in different bases. Combining partial and projective qubit measurements, we provide the solid-state demonstration of the correspondence between a non-classical weak value and the violation of a Leggett-Garg inequality.
We present an indirect two-qubit parity meter in planar circuit quantum electrodynamics, realized by discrete interaction with an ancilla and a subsequent projective ancilla measurement with a dedicated, dispersively coupled resonator. Quantum process tomography and successful entanglement by measurement demonstrate that the meter is intrinsically quantum non-demolition. Separate interaction and measurement steps allow commencing subsequent data qubit operations in parallel with ancilla measurement, offering time savings over continuous schemes.
Qubit reset is crucial at the start of and during quantum information algorithms. We present the experimental demonstration of a practical method to force qubits into their ground state, based on driving certain qubit and cavity transitions. Our protocol, called the double drive reset of population is tested on a superconducting transmon qubit in a three-dimensional cavity. Using a new method for measuring population, we show that we can prepare the ground state with a fidelity of at least 99.5 % in less than 3 microseconds; faster times and higher fidelity are predicted upon parameter optimization.
In the present paper, we have proposed the experimentally achievable method for the characterization of the collective states of qubits in a linear chain. We study temporal dynamics of absorption of a single-photon pulse by three interacting qubits embedded in a one-dimensional waveguide. Numerical simulations were performed for a Gaussian-shaped pulse with different frequency detunings and interaction parameters between qubits. The dynamic behavior of the excitation probability for each qubit is investigated. It was shown that the maximum probability amplitudes of excitation of qubits are reached when the frequency of external excitation coincides with the frequency of excitation of the a corresponding eigenstate of the system. In this case, the the magnitude of the probability amplitude of each qubit in the chain unambiguously correlates with the contribution of this qubit to the corresponding collective state of the system, and the decay of these amplitudes are determined by the resonance width arising from the interaction of the qubit with the photon field of the waveguide. Therefore, we show that the pulsed harmonic probe can be used for the characterization of the energies, widths, and the wavefunctions of the collective states in a one-dimensional qubit chain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا