Do you want to publish a course? Click here

Demonstrating a Driven Reset Protocol of a Superconducting Qubit

172   0   0.0 ( 0 )
 Added by Kurtis Geerlings
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Qubit reset is crucial at the start of and during quantum information algorithms. We present the experimental demonstration of a practical method to force qubits into their ground state, based on driving certain qubit and cavity transitions. Our protocol, called the double drive reset of population is tested on a superconducting transmon qubit in a three-dimensional cavity. Using a new method for measuring population, we show that we can prepare the ground state with a fidelity of at least 99.5 % in less than 3 microseconds; faster times and higher fidelity are predicted upon parameter optimization.



rate research

Read More

Spontaneous emission through a coupled cavity can be a significant decay channel for qubits in circuit quantum electrodynamics. We present a circuit design that effectively eliminates spontaneous emission due to the Purcell effect while maintaining strong coupling to a low-Q cavity. Excellent agreement over a wide range in frequency is found between measured qubit relaxation times and the predictions of a circuit model. Using fast (nanosecond time-scale) flux biasing of the qubit, we demonstrate in situ control of qubit lifetime over a factor of 50. We realize qubit reset with 99.9% fidelity in 120 ns.
We analyze the dynamics of a continuously observed, damped, microwave driven solid state charge qubit. The qubit consists of a single electron in a double well potential, coupled to an oscillating electric field, and which is continuously observed by a nearby point contact electrometer. The microwave field induces transitions between the qubit eigenstates, which have a profound effect on the detector output current. We show that useful information about the qubit dynamics, such as dephasing and relaxation rates, and the Rabi frequency, can be extracted from the DC detector conductance and the detector output noise power spectrum. We also demonstrate that these phenomena can be used for single shot electron emph{spin} readout, for spin based quantum information processing.
By harnessing the superposition and entanglement of physical states, quantum computers could outperform their classical counterparts in solving problems of technological impact, such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Simultaneously meeting the conflicting requirements of long coherence, state preparation, universal gate operations, and qubit readout makes building quantum processors challenging. Few-qubit processors have already been shown in nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We employ a novel two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond time scales, which is mediated by a cavity bus in a circuit quantum electrodynamics (cQED) architecture. This interaction allows generation of highly-entangled states with concurrence up to 94%. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfill the promise of a scalable technology.
Using a circuit QED device, we demonstrate a simple qubit measurement pulse shape that yields fast ring-up and ring-down of the readout resonator regardless of the qubit state. The pulse differs from a square pulse only by the inclusion of additional constant-amplitude segments designed to effect a rapid transition from one steady-state population to another. Using a Ramsey experiment performed shortly after the measurement pulse to quantify the residual population, we find that compared to a square pulse followed by a delay, this pulse shape reduces the timescale for cavity ring-down by more than twice the cavity time constant. At low drive powers, this performance is achieved using pulse parameters calculated from a linear cavity model; at higher powers, empirical optimization of the pulse parameters leads to similar performance.
We demonstrate theoretically how photon number statistics of a driven, damped oscillator at finite temperature can be extracted by measuring the dephasing spectrum of a two-level system dispersively coupled to the oscillator; we thus extend the work of Dykman (1987) and Gambetta et al. (2006). We carefully consider the fidelity of this scheme-- to what extent does the measurement reflect the initial number statistics of the mode? We also derive analytic results for the dephasing of a qubit by a driven, thermal mode, and compare results obtained at different levels of approximation. Our results have relevance both to experiments in circuit cavity QED, as well as to nano-electromechanical systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا