No Arabic abstract
The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) has been proposed as a next-generation experiment for low-energy neutrinos. High-precision spectroscopy of solar, Supernova and geo-neutrinos provides a new access to the otherwise unobservable interiors of Earth, Sun and heavy stars. Due to the potent background discrimination, the detection of the Diffuse Supernova Neutrino Background is expected for the first time in LENA. The sensitivity of the proton lifetime for the decay into Kaon and antineutrino will be increased by an order of magnitude over existing experimental limits. Recent studies indicate that liquid-scintillator detectors are capable to reconstruct neutrino events even at GeV energies, providing the opportunity to use LENA as far detector in a long-baseline neutrino beam experiment.
The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.
A method for calibrating the momentum scale in a particle physics detector is described. The method relies on the determination of the masses of the final state particles in two-body decays of neutral particles, which can then be used to obtain corrections in the momentum scale. A modified version of the Armenteros-Podolanski plot and the $K_S^0 to pi^+ pi^-$ decay is used as a proof of principle for this method.
The Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrino (CAP- TAIN) program is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The CAPTAIN detector is a liquid argon TPC deployed in a portable and evacuable cryostat. Five tons of liquid argon are instrumented with a 2,000 channel liquid argon TPC and a photon detection system. Subsequent to the commissioning phase, the detector will collect data in a high-energy neutron beamline that is part of the Los Alamos Neutron Science Center to measure cross-sections of spallation products that are backgrounds to measurements of neutrinos from a supernova burst, cross-sections of events that mimic the electron neutrino appearance signal in long-baseline neutrino physics and neutron signatures to constrain neutrino energy reconstruction in LBNEs long-baseline program. Subsequent to the neutron running, the CAPTAIN detector will be moved to a neutrino source. Two possibilities are an on-axis run in the NuMI beamline at FNAL and a run in the neutrino source produced by the SNS. An on-axis run at NuMI produces more than one million events of interest in a two or three year run at neutrino energies between 1 and 10 GeV - complementary to the MicroBooNE experiment, which will measure similar interactions at a lower energy range - 0.5 to 2 GeV. At the SNS the neutrinos result from the decays stopped positively charged pions and muons yielding a broad spectrum up to 50 MeV. If located close to the spallation target, CAPTAIN can detect several thousand events per year in the same neutrino energy regime where neutrinos from a supernova burst are. Measurements at the SNS yield a first measurement of the cross- section of neutrinos on argon in this important energy regime.
This contribution to LCWS2016 presents recent developments within the CLICdp collaboration. An updated scenario for the staged operation of CLIC has been published; the accelerator will operate at 380 GeV, 1.5 TeV and 3 TeV. The lowest energy stage is optimised for precision Higgs and top physics, while the higher energy stages offer extended Higgs and BSM physics sensitivity. The detector models CLIC_SiD and CLIC_ILD have been replaced by a single optimised detector; CLICdet. Performance studies and R&D in technologies to meet the requirements for this detector design are ongoing.
The discovery of the neutrino by Reines & Cowan in 1956 revolutionised our understanding of the universe at its most fundamental level and provided a new probe with which to explore the cosmos. Furthermore, it laid the groundwork for one of the most successful and widely used neutrino detection technologies to date: the liquid scintillator detector. In these detectors, the light produced by particle interactions propagates across transparent scintillator volumes to surrounding photo-sensors. This article introduces a new approach, called LiquidO, that breaks with the conventional paradigm of transparency by confining and collecting light near its creation point with an opaque scintillator and a dense array of fibres. The principles behind LiquidOs detection technique and the results of the first experimental validation are presented. The LiquidO technique provides high-resolution imaging that enables highly efficient identification of individual particles event-by-event. Additionally, the exploitation of an opaque medium gives LiquidO natural affinity for using dopants at unprecedented levels. With these and other capabilities, LiquidO has the potential to unlock new opportunities in neutrino physics, some of which are discussed here.