Do you want to publish a course? Click here

Calibration of the momentum scale of a particle physics detector using the Armenteros-Podolanski plot

93   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A method for calibrating the momentum scale in a particle physics detector is described. The method relies on the determination of the masses of the final state particles in two-body decays of neutral particles, which can then be used to obtain corrections in the momentum scale. A modified version of the Armenteros-Podolanski plot and the $K_S^0 to pi^+ pi^-$ decay is used as a proof of principle for this method.



rate research

Read More

The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) has been proposed as a next-generation experiment for low-energy neutrinos. High-precision spectroscopy of solar, Supernova and geo-neutrinos provides a new access to the otherwise unobservable interiors of Earth, Sun and heavy stars. Due to the potent background discrimination, the detection of the Diffuse Supernova Neutrino Background is expected for the first time in LENA. The sensitivity of the proton lifetime for the decay into Kaon and antineutrino will be increased by an order of magnitude over existing experimental limits. Recent studies indicate that liquid-scintillator detectors are capable to reconstruct neutrino events even at GeV energies, providing the opportunity to use LENA as far detector in a long-baseline neutrino beam experiment.
207 - K. Marton , G. Kiss , A. Laszlo 2014
The NA61 Experiment at CERN SPS is a large acceptance hadron spectrometer, aimed to studying of hadron-hadron, hadron-nucleus, and nucleus-nucleus interactions in a fixed target environment. The present paper discusses the construction and performance of the Low Momentum Particle Detector (LMPD), a small time projection chamber unit which has been added to the NA61 setup in 2012. The LMPD considerably extends the detector acceptance towards the backward region, surrounding the target in hadron-nucleus interactions. The LMPD features simultaneous range and ionization measurements, which allows for particle identification and momentum measurement in the 0.1-0.25 GeV/c momentum range for protons. The possibility of Z=1 particle identification in this range is directly demonstrated.
The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. NEXT-White has been operating at Laboratorio Subterraneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed with $^{83m}mathrm{Kr}$ decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event position which is mainly caused by variations in solid angle coverage. After producing calibration maps to correct for both effects we measure an excellent energy resolution for 41.5 keV point-like deposits of (4.553 $pm$ 0.010 (stat.) $pm$ 0.324 (sys.)) % FWHM in the full chamber and (3.804 $pm$ 0.013 (stat.) $pm$ 0.112 (sys.)) % FWHM in a restricted fiducial volume. Using naive 1/$sqrt{E}$ scaling, these values translate into resolutions of (0.516 $pm$ 0.0014 (stat.) $pm$ 0.0421 (sys.)) % FWHM and (0.4943 $pm$ 0.0017 (stat.) $pm$ 0.0146 (sys.)) % FWHM at the $Q_{betabeta}$ energy of xenon double beta decay (2458 keV), well within range of our target value of 1%.
103 - Feiyang Zhang , Rui Li , Jiaqi Hui 2021
Gamma sources are routinely used to calibrate the energy scale and resolution of liquid scintillator detectors. However, non-scintillating material surrounding the source introduces energy losses, which may bias the determination of the centroid and width of the full absorption peak. In this paper, we present a general method to determine the true gamma centroid and width to a relative precision of 0.03% and 0.50%, respectively, using energy losses predicted by the Monte Carlo simulation. In particular, the accuracy of the assumed source geometry is readily obtained from the fit. The method performs well with experimental data in the Daya Bay detector.
The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا