Do you want to publish a course? Click here

Neutrino Physics with an Opaque Detector

240   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of the neutrino by Reines & Cowan in 1956 revolutionised our understanding of the universe at its most fundamental level and provided a new probe with which to explore the cosmos. Furthermore, it laid the groundwork for one of the most successful and widely used neutrino detection technologies to date: the liquid scintillator detector. In these detectors, the light produced by particle interactions propagates across transparent scintillator volumes to surrounding photo-sensors. This article introduces a new approach, called LiquidO, that breaks with the conventional paradigm of transparency by confining and collecting light near its creation point with an opaque scintillator and a dense array of fibres. The principles behind LiquidOs detection technique and the results of the first experimental validation are presented. The LiquidO technique provides high-resolution imaging that enables highly efficient identification of individual particles event-by-event. Additionally, the exploitation of an opaque medium gives LiquidO natural affinity for using dopants at unprecedented levels. With these and other capabilities, LiquidO has the potential to unlock new opportunities in neutrino physics, some of which are discussed here.



rate research

Read More

New developments in liquid scintillators, high-efficiency, fast photon detectors, and chromatic photon sorting have opened up the possibility for building a large-scale detector that can discriminate between Cherenkov and scintillation signals. Such a detector could exploit these two distinct signals to observe particle direction and species using Cherenkov light while also having the excellent energy resolution and low threshold of a scintillator detector. Situated in a deep underground laboratory, and utilizing new techniques in computing and reconstruction techniques, such a detector could achieve unprecedented levels of background rejection, thus enabling a rich physics program that would span topics in nuclear, high-energy, and astrophysics, and across a dynamic range from hundreds of keV to many GeV. The scientific program would include observations of low- and high-energy solar neutrinos, determination of neutrino mass ordering and measurement of the neutrino CP violating phase, observations of diffuse supernova neutrinos and neutrinos from a supernova burst, sensitive searches for nucleon decay and, ultimately, a search for NeutrinoLess Double Beta Decay (NLDBD) with sensitivity reaching the normal ordering regime of neutrino mass phase space. This paper describes Theia, a detector design that incorporates these new technologies in a practical and affordable way to accomplish the science goals described above. We consider two scenarios, one in which Theia would reside in a cavern the size and shape of the caverns intended to be excavated for the Deep Underground Neutrino Experiment (DUNE) which we call Theia 25, and a larger 100 ktonne version (Theia 100) that could achieve an even broader and more sensitive scientific program.
152 - Fengpeng An , Guangpeng An , Qi An 2015
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $pto K^++bar u$ decay channel. The JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.
The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.
134 - M. Sorel 2014
Scintillation light is used in liquid argon (LAr) neutrino detectors to provide a trigger signal, veto information against cosmic rays, and absolute event timing. In this work, we discuss additional opportunities offered by detectors with enhanced sensitivity to scintillation light, that is with light collection efficiencies of about $10^{-3}$. We focus on two key detector performance indicators for neutrino oscillation physics: calorimetric neutrino energy reconstruction and neutrino/antineutrino separation in a non-magnetized detector. Our results are based on detailed simulations, with neutrino interactions modelled according to the GENIE event generator, while the charge and light responses of a large LAr ideal detector are described by the Geant4 and NEST simulation tools. A neutrino energy resolution as good as 3.3% RMS for 4 GeV electron neutrino charged-current interactions can in principle be obtained in a large detector of this type, by using both charge and light information. By exploiting muon capture in argon and scintillation light information to veto muon decay electrons, we also obtain muon neutrino identification efficiencies of about 50%, and muon antineutrino misidentification rates at the few percent level, for few-GeV neutrino interactions that are fully contained. We argue that the construction of large LAr detectors with sufficiently high light collection efficiencies is in principle possible.
The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons are obtained from these data. A measurement of the parameter in Birks law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4%, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross section measurement program.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا