Do you want to publish a course? Click here

Black Hole Aurora powered by a Rotating Black Hole

113   0   0.0 ( 0 )
 Added by Masaaki Takahashi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasmas kinetic energy and holes rotational energy can convert to radiative energy. In this letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; the look would be like an aurora. The high energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.



rate research

Read More

Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH) - neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the nature of compact binary coalescences.
We compare accretion and black hole spin as potential energy sources for outbursts from AGN in brightest cluster galaxies (BCGs). Based on our adopted spin model, we find that the distribution of AGN power estimated from X-ray cavities is consistent with a broad range of both spin parameter and accretion rate. Sufficient quantities of molecular gas are available in most BCGs to power their AGN by accretion alone. However, we find no correlation between AGN power and molecular gas mass over the range of jet power considered here. For a given AGN power, the BCGs gas mass and accretion efficiency, defined as the fraction of the available cold molecular gas that is required to power the AGN, both vary by more than two orders of magnitude. Most of the molecular gas in BCGs is apparently consumed by star formation or is driven out of the nucleus by the AGN before it reaches the nuclear black hole. Bondi accretion from hot atmospheres is generally unable to fuel powerful AGN, unless their black holes are more massive than their bulge luminosities imply. We identify several powerful AGN that reside in relatively gas-poor galaxies, indicating an unusually efficient mode of accretion, or that their AGN are powered by another mechanism. If these systems are powered primarily by black hole spin, rather than by accretion, spin must also be tapped efficiently in some systems, i.e., $P_{rm jet} > dot Mc^2$, or their black hole masses must be substantially larger than the values implied by their bulge luminosities. We constrain the (model dependent) accretion rate at the transition from radiatively inefficient to radiatively efficient accretion flows to be a few percent of the Eddington rate, a value that is consistent with other estimates.
212 - B.R. McNamara 2009
Powering the 10^62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion implies that its supermassive black hole (SMBH) grew by ~6x10^8 solar masses over the past 100 Myr. We place upper limits on the amount of cold gas and star formation near the nucleus of <10^9 solar masses and <2 solar masses per year, respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the bulge must have been consumed by its SMBH at the rate of ~3-5 solar masses per year while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10^11 solar masses. Its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ~5x10^9 solar mass black hole. We suggest instead that the AGN outburst is powered by a rapidly-spinning black hole. A maximally-spinning, 10^9 solar mass black hole contains enough rotational energy, ~10^62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10^10 solar mass. The host galaxys unusually large, 3.8 kpc stellar core radius (light deficit) may witness the presence of an ultramassive black hole.
565 - Tomaso M. Belloni 2011
Sixteen years of observations of black hole transients with the Rossi X-ray Timing Explorer, complemented by other X-ray observatories and ground-based optical/infrared/radio telescopes have given us a clear view of the complex phenomenology associated with their bright outbursts. This has led to the definition of a small number of spectral/timing states which are separated by marked transitions in observables. The association of these states and their transitions to changes in the radio emission from relativistic radio jets completes the picture and have led to the study of the connection between accretion and ejection. A good number of fundamental questions are still unanswered, but the existing picture provides a good framework on which to base theoretical studies. We discuss the current observational standpoint, with emphasis onto the spectral and timing evolution during outbursts, as well as the prospects for future missions such as ASTROSAT (2012) and LOFT (>2020 if selected).
We obtain the shadow cast induced by the rotating black hole with an anisotropic matter. A Killing tensor representing the hidden symmetry is derived explicitly. The existence of separability structure implies a complete integrability of the geodesic motion. We analyze an effective potential around the unstable circular photon orbits to show that one side of the black hole is brighter than the other side. Further, it is shown that the inclusion of the anisotropic matter ($Kr^{2(1-w)}$) has an effect on the observables of the shadow cast. The shadow observables include approximate shadow radius $R_s$, distortion parameter $delta_s$, area of the shadow $A_s$, and oblateness $D_{os}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا