Do you want to publish a course? Click here

Shadow cast by a rotating black hole with anisotropic matter

71   0   0.0 ( 0 )
 Added by Wonwoo Lee
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtain the shadow cast induced by the rotating black hole with an anisotropic matter. A Killing tensor representing the hidden symmetry is derived explicitly. The existence of separability structure implies a complete integrability of the geodesic motion. We analyze an effective potential around the unstable circular photon orbits to show that one side of the black hole is brighter than the other side. Further, it is shown that the inclusion of the anisotropic matter ($Kr^{2(1-w)}$) has an effect on the observables of the shadow cast. The shadow observables include approximate shadow radius $R_s$, distortion parameter $delta_s$, area of the shadow $A_s$, and oblateness $D_{os}$.



rate research

Read More

The existence of quintessential dark energy around a black hole has considerable consequences on its spacetime geometry. Hence, in this article, we explore its effect on horizons and the silhouette generated by a Kerr-Newman black hole in quintessential dark energy. Moreover, to analyze the deflection angle of light, we utilize the Gauss-Bonnet theorem. The obtained result demonstrates that, due to the dragging effect, the black hole spin elongates its shadow in the direction of the rotational axis, while increases the deflection angle. On the other hand, the black hole charge diminishing its shadow, as well as the angle of lights deflection. Besides, both spin and charge significantly increase the distortion effect in the black holes shadow. The quintessence parameter gamma, increases the shadow radius, while decreases the distortion effect at higher values of charge and spin parameters.
We present a family of new rotating black hole solutions to Einsteins equations that generalizes the Kerr-Newman spacetime to include an anisotropic matter. The geometry is obtained by employing the Newman-Janis algorithm. In addition to the mass, the charge and the angular momentum, an additional hair exists thanks to the negative radial pressure of the anisotropic matter. The properties of the black hole are analyzed in detail including thermodynamics. This black hole can be used as a better engine than the Kerr-Newman one in extracting energy.
We consider a static, axially symmetric spacetime describing the superposition of a Schwarzschild black hole (BH) with a thin and heavy accretion disk. The BH-disk configuration is a solution of the Einstein field equations within the Weyl class. The disk is sourced by a distributional energy-momentum tensor and it is located at the equatorial plane. It can be interpreted as two streams of counter-rotating particles, yielding a total vanishing angular momentum. The phenomenology of the composed system depends on two parameters: the fraction of the total mass in the disk, $m$, and the location of the inner edge of the disk, $a$. We start by determining the sub-region of the space of parameters wherein the solution is physical, by requiring the velocity of the disk particles to be sub-luminal and real. Then, we study the null geodesic flow by performing backwards ray-tracing under two scenarios. In the first scenario the composed system is illuminated by the disk and in the second scenario the composed system is illuminated by a far-away celestial sphere. Both cases show that, as $m$ grows, the shadow becomes more prolate. Additionally, the first scenario makes clear that as $m$ grows, for fixed $a$, the geometrically thin disk appears optically enlarged, i.e., thicker, when observed from the equatorial plane. This is to due to light rays that are bent towards the disk, when backwards ray traced. In the second scenario, these light rays can cross the disk (which is assumed to be transparent) and may oscillate up to a few times before reaching the far away celestial sphere. Consequently, an almost equatorial observer sees different patches of the sky near the equatorial plane, as a chaotic mirage. As $mrightarrow 0$ one recovers the standard test, i.e., negligible mass, disk appearance.
In this paper, we examine the effect of dark matter to a Kerr black hole of mass $m$. The metric is derived using the Newman-Janis algorithm, where the seed metric originates from the Schwarzschild black hole surrounded by a spherical shell of dark matter with mass $M$ and thickness $Delta r_{s}$. The seed metric is also described in terms of a piecewise mass function with three different conditions. Specializing in the non-trivial case where the observer resides inside the dark matter shell, we analyzed how the effective mass of the black hole environment affects the basic black hole properties. A high concentration of dark matter near the rotating black hole is needed to have considerable deviations on the horizons, ergosphere, and photonsphere radius. The time-like geodesic, however, shows more sensitivity to deviation even at very low dark matter density. Further, the location of energy extraction via the Penrose process is also shown to remain unchanged. With how the dark matter distribution is described in the mass function, and the complexity of how the shadow radius is defined for a Kerr black hole, deriving an analytic expression for $Delta r_{s}$ as a condition for notable dark matter effects to occur remains inconvenient.
We study the shadow of a rotating squashed Kaluza-Klein (KK) black hole and the shadow is found to possess distinct properties from those of usual rotating black holes. It is shown that the shadow for a rotating squashed KK black hole is heavily influenced by the specific angular momentum of photon from the fifth dimension. Especially, as the parameters lie in a certain special range, there is no any shadow for a black hole, which does not emerge for the usual black holes. In the case where the black hole shadow exists, the shadow shape is a perfect black disk and its radius decreases with the rotation parameter of the black hole. Moreover, the change of the shadow radius with extra dimension parameter also depends on the rotation parameter of black hole. Finally, with the latest observation data, we estimate the angular radius of the shadow for the supermassive black hole Sgr $A^{*}$ at the centre of the Milky Way galaxy and the supermassive black hole in $M87$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا