No Arabic abstract
Calculations of the hyperpolarizability are typically much more difficult to converge with basis set size than the linear polarizability. In order to understand these convergence issues and hence obtain accurate ab initio values, we compare calculations of the static hyperpolarizability of the gas-phase chloroform molecule (CHCl_3) using three different kinds of basis sets: Gaussian-type orbitals, numerical basis sets, and real-space grids. Although all of these methods can yield similar results, surprisingly large, diffuse basis sets are needed to achieve convergence to comparable values. These results are interpreted in terms of local polarizability and hyperpolarizability densities. We find that the hyperpolarizability is very sensitive to the molecular structure, and we also assess the significance of vibrational contributions and frequency dispersion.
There are many ways to numerically represent of chemical systems in order to compute their electronic structure. Basis functions may be localized in real-space (atomic orbitals), in momentum-space (plane waves), or in both components of phase-space. Such phase-space localized basis functions in the form of wavelets, have been used for many years in electronic structure. In this paper, we turn to a phase-space localized basis set first introduced by K. G. Wilson. We provide the first full study of this basis and its numerical implementation. To calculate electronic energies of a variety of small molecules and states, we utilize the sum-of-products form, Gaussian quadratures, and introduce methods for selecting sample points from a grid of phase-space localized Wilson basis. Both full configuration interaction and Hartree-Fock implementations are discussed and implemented numerically. As with many grid based methods, describing both tightly bound and diffuse orbitals is challenging so we have considered augmenting the Wilson basis set as projected Slater-type orbitals. We have also compared the Wilson basis set against the recently introduced wavelet transformed Gaussians (gausslets). Throughout, we give comments on the implementation and use small atoms and molecules to illustrate convergence properties of the Wilson basis.
Since in periodic systems, a given element may be present in different spatial arrangements displaying vastly different physical and chemical properties, an elemental basis set that is independent of physical properties of materials may lead to significant simulation inaccuracies. To avoid such a lack of material specificity within a given basis set, we present a material-specific Gaussian basis optimization scheme for solids, which simultaneously minimizes the total energy of the system and optimizes the band energies when compared to the reference plane wave calculation while taking care of the overlap matrix condition number. To assess this basis set optimization scheme, we compare the quality of the Gaussian basis sets generated for diamond, graphite, and silicon via our method against the existing basis sets. The optimization scheme of this work has also been tested on the existing Gaussian basis sets for periodic systems such as MoS$_2$ and NiO yielding improved results.
We investigate the use of optimized correlation consistent gaussian basis sets for the study of insulating solids with auxiliary-field quantum Monte Carlo (AFQMC). The exponents of the basis set are optimized through the minimization of the second order M{o}ller--Plesset perturbation theory (MP2) energy in a small unit cell of the solid. We compare against other alternative basis sets proposed in the literature, namely calculations in the Kohn--Sham basis and in the natural orbitals of an MP2 calculation. We find that our optimized basis sets accelerate the convergence of the AFQMC correlation energy compared to a Kohn--Sham basis, and offer similar convergence to MP2 natural orbitals at a fraction of the cost needed to generate them. We also suggest the use of an improved, method independent, MP2-based basis set correction that significantly reduces the required basis set sizes needed to converge the correlation energy. With these developments, we study the relative performance of these basis sets in LiH, Si and MgO, and determine that our optimized basis sets yield the most consistent results as a function of volume. Using these optimized basis sets, we systematically converge the AFQMC calculations to the complete basis set and thermodynamic limit and find excellent agreement with experiment for systems studied. Although we focus on AFQMC, our basis set generation procedure is independent of the subsequent correlated wavefunction method used.
The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augumented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrodinger equation for low-dimensionality systems.