No Arabic abstract
We study the rotational properties of magnetized and self-gravitating molecular cloud cores formed in 2 very high resolution 3D molecular cloud simulations.The simulations have been performed using the code RAMSES at an effective resolution of 4096^3.One simulation represents a mildly magnetically-supercritical cloud and the other a strongly magnetically-supercritical cloud.A noticeable difference between the 2 simulations is the core formation efficiency (CFE) of the high density cores.In the strongly supercritical simulations the CFE is ~33 % per free-fall time of the cloud tff,cl, whereas in the mildly supercritical simulations this value goes down to ~6%/tff,cl. A comparison of the intrinsic specific angular momentum j3D distributions of the cores with the distribitions of j2D derived using synthetic 2D velocity maps of the cores,shows that the synthetic observations tend to overestimate the true value of j by a factor of ~10.The origin of this discrepancy lies in the fact that contrary to the intrinsic determination which sums up the individual gas parcels contributions to j, the determination of j using the observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our results provide a natural explanation for the discrepancy by a factor ~10 observed between the intrinsic 3D distributions of j and the corresponding distributions derived in real observations.We suggest that measurements of j which are based on the measurement of the observed global velocity gradients may need to be reduced by a factor of ~10 in order to derive a more accurate estimate of j in the cores.
We aim to reveal the physical properties and chemical composition of the cores in the California molecular cloud (CMC), so as to better understand the initial conditions of star formation. We made a high-resolution column density map (18.2) with Herschel data, and extracted a complete sample of the cores in the CMC with the textsl{fellwalker} algorithm. We performed new single-pointing observations of molecular lines near 90 GHz with the IRAM 30m telescope along the main filament of the CMC. In addition, we also performed a numerical modeling of chemical evolution for the cores under the physical conditions. We extracted 300 cores, of which 33 are protostellar and 267 are starless cores. About 51% (137 of 267) of the starless cores are prestellar cores. Three cores have the potential to evolve into high-mass stars. The prestellar core mass function (CMF) can be well fit by a log-normal form. The high-mass end of the prestellar CMF shows a power-law form with an index $alpha=-0.9pm 0.1$ that is shallower than that of the Galactic field stellar mass function. Combining the mass transformation efficiency ($varepsilon$) from the prestellar core to the star of $15pm 1%$ and the core formation efficiency (CFE) of 5.5%, we suggest an overall star formation efficiency of about 1% in the CMC. In the single-pointing observations with the IRAM 30m telescope, we find that 6 cores show blue-skewed profile, while 4 cores show red-skewed profile. [$rm {HCO}^{+}$]/[HNC] and [$rm {HCO}^{+}$]/$rm [N_{2}H^{+}]$ in protostellar cores are higher than those in prestellar cores; this can be used as chemical clocks. The best-fit chemical age of the cores with line observations is $sim 5times 10^4$~years.
Similarity in shape between the initial mass function (IMF) and the core mass functions (CMFs) in star-forming regions prompts the idea that the IMF originates from the CMF through a self-similar core-to-star mass mapping process. To accurately determine the shape of the CMF, we create a sample of 8,431 cores with the dust continuum maps of the Cygnus X giant molecular cloud complex, and design a procedure for deriving the CMF considering the mass uncertainty, binning uncertainty, sample incompleteness, and the statistical errors. The resultant CMF coincides well with the IMF for core masses from a few $M_{odot}$ to the highest masses of 1300 $M_{odot}$ with a power-law of ${rm d}N/{rm d}Mpropto M^{-2.30pm0.04}$, but does not present an obvious flattened turnover in the low-mass range as the IMF does. More detailed inspection reveals that the slope of the CMF steepens with increasing mass. Given the numerous high-mass star-forming activities of Cygnus X, this is in stark contrast with the existing top-heavy CMFs found in high-mass star-forming clumps. We also find that the similarity between the IMF and the mass function of cloud structures is not unique at core scales, but can be seen for cloud structures of up to several pc scales. Finally, our SMA observations toward a subset of the cores do not present evidence for the self-similar mapping. The latter two results indicate that the shape of the IMF may not be directly inherited from the CMF.
The most accurate measurements of magnetic fields in star-forming gas are based on the Zeeman observations analyzed by Crutcher et al. (2010). We show that their finding that the 3D magnetic field scales approximately as density$^{0.65}$ can also be obtained from analysis of the observed line-of-sight fields. We present two large-scale AMR MHD simulations of several thousand $M_odot$ of turbulent, isothermal, self-gravitating gas, one with a strong initial magnetic field (Alfven Mach number $M_{A,0}= 1$) and one with a weak initial field ($M_{A,0}=10$). We construct samples of the 100 most massive clumps in each simulation and show that they exhibit a power-law relation between field strength and density in excellent agreement with the observed one. Our results imply that the average field in molecular clumps in the interstellar medium is $<B_{tot}> sim 42 n_{H,4}^{0.65} mu$G. Furthermore, the median value of the ratio of the line-of-sight field to density$^{0.65}$ in the simulations is within a factor of about (1.3, 1.7) of the observed value for the strong and weak field cases, respectively. The median value of the mass-to-flux ratio, normalized to the critical value, is 70% of the line-of-sight value. This is larger than the 50% usually cited for spherical clouds because the actual mass-to-flux ratio depends on the volume-weighted field, whereas the observed one depends on the mass-weighted field. Our results indicate that the typical molecular clump in the ISM is significantly supercritical (~ factor of 3). The results of our strong-field model are in very good quantitative agreement with the observations of Li et al. (2009), which show a strong correlation in field orientation between small and large scales. Because there is a negligible correlation in the weak-field model, we conclude that molecular clouds form from strongly magnetized (although magnetically supercritical) gas.
We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments ($lambda$ Orionis, Orion A, B, Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45-m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N$_2$H$^+$, c-C$_3$H$_2$) and deuterated molecules (e.g., N$_2$D$^+$, DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores ($>$1 kpc). For $lambda$ Orionis, Orion A, and B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.
We present the first results of high-spectral resolution (0.023 km/s) N$_2$H$^+$ observations of dense gas dynamics at core scales (~0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear velocity gradients across the cores measured in our targets nicely agree with the well-known power-law correlation between the specific angular momentum and core size, it is unclear if the observed gradients represent core-scale rotation. In addition, our Argus data reveal detailed and intriguing gas structures in position-velocity (PV) space for all 5 targets studied in this project, which could suggest that the velocity gradients previously observed in many dense cores actually originate from large-scale turbulence or convergent flow compression instead of rigid-body rotation. We also note that there are targets in this study with their star-forming disks nearly perpendicular to the local velocity gradients, which, assuming the velocity gradient represents the direction of rotation, is opposite to what is described by the classical theory of star formation. This provides important insight on the transport of angular momentum within star-forming cores, which is a critical topic on studying protostellar disk formation.