Do you want to publish a course? Click here

A thermally stable heating mechanism for the intracluster medium: turbulence, magnetic fields and plasma instabilities

166   0   0.0 ( 0 )
 Added by Matthew Kunz
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the problem of self-regulated heating and cooling in galaxy clusters and the implications for cluster magnetic fields and turbulence. Viscous heating of a weakly collisional magnetised plasma is regulated by the pressure anisotropy with respect to the local direction of the magnetic field. The intracluster medium is a high-beta plasma, where pressure anisotropies caused by the turbulent stresses and the consequent local changes in the magnetic field will trigger very fast microscale instabilities. We argue that the net effect of these instabilities will be to pin the pressure anisotropies at a marginal level, controlled by the plasma beta parameter. This gives rise to local heating rates that turn out to be comparable to the radiative cooling rates. Furthermore, we show that a balance between this heating and Bremsstrahlung cooling is thermally stable, unlike the often conjectured balance between cooling and thermal conduction. Given a sufficient (and probably self-regulating) supply of turbulent power, this provides a physical mechanism for mitigating cooling flows and preventing cluster core collapse. For observed density and temperature profiles, the assumed balance of viscous heating and radiative cooling allows us to predict magnetic-field strengths, turbulent velocities and turbulence scales as functions of distance from the centre. Specific predictions and comparisons with observations are given for several different clusters. Our predictions can be further tested by future observations of cluster magnetic fields and turbulent velocities.



rate research

Read More

139 - Ian J. Parrish 2012
In the intracluster medium (ICM) of galaxy clusters, heat and momentum are transported almost entirely along (but not across) magnetic field lines. We perform the first fully self-consistent Braginskii-MHD simulations of galaxy clusters including both of these effects. Specifically, we perform local and global simulations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability (HBI) and assess the effects of viscosity on their saturation and astrophysical implications. We find that viscosity has only a modest effect on the saturation of the MTI. As in previous calculations, we find that the MTI can generate nearly sonic turbulent velocities in the outer parts of galaxy clusters, although viscosity somewhat suppresses the magnetic field amplification. At smaller radii in cool-core clusters, viscosity can decrease the linear growth rates of the HBI. However, it has less of an effect on the HBIs nonlinear saturation, in part because three-dimensional interchange motions (magnetic flux tubes slipping past each other) are not damped by anisotropic viscosity. In global simulations of cool core clusters, we show that the HBI robustly inhibits radial thermal conduction and thus precipitates a cooling catastrophe. The effects of viscosity are, however, more important for higher entropy clusters. We argue that viscosity can contribute to the global transition of cluster cores from cool-core to non cool-core states: additional sources of intracluster turbulence, such as can be produced by AGN feedback or galactic wakes, suppress the HBI, heating the cluster core by thermal conduction; this makes the ICM more viscous, which slows the growth of the HBI, allowing further conductive heating of the cluster core and a transition to a non cool-core state.
The intracluster medium of galaxy clusters is a weakly collisional, high-beta plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign, the magnetothermal instability (MTI) in the outskirts of non-isothermal clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena MHD code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We highlight the importance of the microscale instabilities that inevitably accompany and regulate the pressure anisotropies generated by the HBI and MTI. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few tens of kpc, conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically-aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during the formation of a cold filament produces accompanying hot filaments, which can be searched for in deep Chandra observations of nearby cool-core clusters. In the case of the MTI, anisotropic viscosity maintains the coherence of magnetic-field lines over larger distances than in the inviscid case, providing a natural lower limit for the scale on which the field can fluctuate freely. In the nonlinear state, the magnetic field exhibits a folded structure in which the field-line curvature and field strength are anti-correlated.
324 - Xun Shi , Congyao Zhang 2019
Turbulence evolution in a density-stratified medium differs from that of homogeneous isotropic turbulence described by the Kolmogorov picture. We evaluate the degree of this effect in the intracluster medium (ICM) with hydrodynamical simulations. We find that the buoyancy effect induced by ICM density stratification introduces qualitative changes to the turbulence energy evolution, morphology, and the density fluctuation - turbulence Mach number relation, and likely explains the radial dependence of the ICM turbulence amplitude as found previously in cosmological simulations. A new channel of energy flow between the kinetic and the potential energy is opened up by buoyancy. When the gravitational potential is kept constant with time, this energy flow leaves oscillations to the energy evolution, and leads to a balanced state of the two energies where both asymptote to power-law time evolution with slopes shallower than that for the turbulence kinetic energy of homogeneous isotropic turbulence. We discuss that the energy evolution can differ more significantly from that of homogeneous isotropic turbulence when there is a time variation of the gravitational potential. Morphologically, ICM turbulence can show a layered vertical structure and large horizontal vortical eddies in the central regions with the greatest density stratification. In addition, we find that the coefficient in the linear density fluctuation - turbulence Mach number relation caused by density stratification is in general a variable with position and time.
126 - Fabio Zandanel 2013
Cosmological hydrodynamical simulations of galaxy clusters are still challenged to produce a model for the intracluster medium that matches all aspects of current X-ray and Sunyaev-Zeldovich observations. To facilitate such comparisons with future simulations and to enable realistic cluster population studies for modeling e.g., non-thermal emission processes, we construct a phenomenological model for the intracluster medium that is based on a representative sample of observed X-ray clusters. We create a mock galaxy cluster catalog based on the large collisionless N-body simulation MultiDark, by assigning our gas density model to each dark matter cluster halo. Our clusters are classified as cool-core and non cool-core according to a dynamical disturbance parameter. We demonstrate that our gas model matches the various observed Sunyaev-Zeldovich and X-ray scaling relations as well as the X-ray luminosity function, thus enabling to build a reliable mock catalog for present surveys and forecasts for future experiments. In a companion paper, we apply our catalogs to calculate non-thermal radio and gamma-ray emission of galaxy clusters. We make our cosmologically complete multi-frequency mock catalogs for the (non-)thermal cluster emission at different redshifts publicly and freely available online through the MultiDark database (www.multidark.org).
Faraday rotation and synchrotron emission from extragalactic radio sources give evidence for the presence of magnetic fields extending over ~Mpc scales. However, the origin of these fields remains elusive. With new high-resolution grid simulations we studied the growth of magnetic fields in a massive galaxy cluster that in several aspects is similar to the Coma cluster. We investigated models in which magnetic fields originate from primordial seed fields with comoving strengths of 0.1 nG at redshift z=30. The simulations show evidence of significant magnetic field amplification. At the best spatial resolution (3.95 kpc), we are able to resolve the scale where magnetic tension balances the bending of magnetic lines by turbulence. This allows us to observe the final growth stage of the small-scale dynamo. To our knowledge this is the first time that this is seen in cosmological simulations of the intracluster medium. Our mock observations of Faraday Rotation provide a good match to observations of the Coma cluster. However, the distribution of magnetic fields shows strong departures from a simple Maxwellian distribution, suggesting that the three-dimensional structure of magnetic fields in real clusters may be significantly different than what is usually assumed when inferring magnetic field values from rotation measure observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا