Do you want to publish a course? Click here

A Phenomenological Model for the Intracluster Medium that matches X-ray and Sunyaev-Zeldovich observations

133   0   0.0 ( 0 )
 Added by Fabio Zandanel
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmological hydrodynamical simulations of galaxy clusters are still challenged to produce a model for the intracluster medium that matches all aspects of current X-ray and Sunyaev-Zeldovich observations. To facilitate such comparisons with future simulations and to enable realistic cluster population studies for modeling e.g., non-thermal emission processes, we construct a phenomenological model for the intracluster medium that is based on a representative sample of observed X-ray clusters. We create a mock galaxy cluster catalog based on the large collisionless N-body simulation MultiDark, by assigning our gas density model to each dark matter cluster halo. Our clusters are classified as cool-core and non cool-core according to a dynamical disturbance parameter. We demonstrate that our gas model matches the various observed Sunyaev-Zeldovich and X-ray scaling relations as well as the X-ray luminosity function, thus enabling to build a reliable mock catalog for present surveys and forecasts for future experiments. In a companion paper, we apply our catalogs to calculate non-thermal radio and gamma-ray emission of galaxy clusters. We make our cosmologically complete multi-frequency mock catalogs for the (non-)thermal cluster emission at different redshifts publicly and freely available online through the MultiDark database (www.multidark.org).



rate research

Read More

140 - N. Battaglia 2014
Recent first detections of the cross-correlation of the thermal Sunyaev-Zeldovich (tSZ) signal in Planck cosmic microwave background (CMB) temperature maps with gravitational lensing maps inferred from the Planck CMB data and the CFHTLenS galaxy survey provide new probes of the relationship between baryons and dark matter. Using cosmological hydrodynamics simulations, we show that these cross-correlation signals are dominated by contributions from hot gas in the intracluster medium (ICM), rather than diffuse, unbound gas located beyond the virial radius (the missing baryons). Thus, these cross-correlations offer a tool with which to study the ICM over a wide range of halo masses and redshifts. In particular, we show that the tSZ - CMB lensing cross-correlation is more sensitive to gas in lower-mass, higher-redshift halos and gas at larger cluster-centric radii than the tSZ - galaxy lensing cross-correlation. Combining these measurements with primary CMB data will constrain feedback models through their signatures in the ICM pressure profile. We forecast the ability of ongoing and future experiments to constrain such ICM parameters, including the mean amplitude of the pressure - mass relation, the redshift evolution of this amplitude, and the mean outer logarithmic slope of the pressure profile. The results are promising, with $approx 5-20$% precision constraints achievable with upcoming experiments, even after marginalizing over cosmological parameters.
370 - Kaustuv Basu 2010
We present results from a joint X-ray/Sunyaev-Zeldovich modeling of the intra-cluster gas using XMM-Newton and APEX-SZ imaging data. The goal is to study the physical properties of the intra-cluster gas with a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. We demonstrate a decrease of gas temperature in the cluster outskirts, and also measure the gas entropy profile, both of which are obtained for the first time independently of X-ray spectroscopy, using Sunyaev-Zeldovich and X-ray imaging data. The contribution of the APEX-SZ systematic uncertainties in measuring the gas temperature at large radii is shown to be small compared to the XMM-Newton and Chandra systematic spectroscopic errors.
We perform a joint analysis of X-ray and Sunyaev Zeldovich (SZ) effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zeldovich Array for two clusters, Abell 2631 and Abell 2204.
We use numerical simulations to predict the soft X-ray ([0.4-0.6] keV) and Sunyaev-Zeldovich signal (at 150 GHz) from the large scale structure in the Universe and then compute 2-point statistics to study the spatial distribution and time evolution of the signals. The average X-ray signal predicted for the WHIM is in good agreement with observational constraints that set it at about 10% of the total Diffuse X-ray Background. The characteristic angle computed with the Autocorrelation Function is of the order of some arcminutes and becomes smaller at higher redshift. The power spectrum peak of the SZ due to the WHIM is at l~10000 and has amplitude of ~0.2 muK^2, about one order of magnitude below the signal measured with telescopes like Planck, ACT, and SPT. Even if the high-redshift WHIM signal is too weak to be detected using X-rays only, the small-scale correlation between X-ray and SZ maps is dominated by the high-redshift WHIM. This makes the analysis of the SZ signal in support of X-rays a promising tool to study the early time WHIM.
Cosmography provides a direct method to map the expansion history of the Universe in a model-independent way. Recently, different kinds of observations have been used in cosmographic analyses, such as SNe Ia and gamma ray bursts measurements, weak and strong lensing, cosmic microwave background anisotropies, etc. In this work we examine the prospects for constraining cosmographic parameters from current and future measurements of galaxy clusters distances based on their Sunyaev-Zeldovich effect (SZE) and X-ray observations. By assuming the current observational error distribution, we perform Monte Carlo simulations based on a well-behaved parameterization for the deceleration parameter to generate samples with different characteristics and study the improvement on the determination of the cosmographic parameters from upcoming data. The influence of galaxy clusters (GC) morphologies on the $H_0- q_0$ plane is also investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا