Do you want to publish a course? Click here

On correlation functions of operators dual to classical spinning string states

156   0   0.0 ( 0 )
 Added by Romuald A. Janik
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We explore how to compute, classically at strong coupling, correlation functions of local operators corresponding to classical spinning string states. The picture we obtain is of `fattened Witten diagrams, the evaluation of which turns out to be surprisingly subtle and requires a modification of the naive classical action due to a necessary projection onto appropriate wave functions. We examine string solutions which compute the simplest case of a two-point function and reproduce the right scaling with the anomalous dimensions corresponding to the energies of the associated spinning string solutions. We also describe, under some simplifying assumptions, how the spacetime dependence of a conformal three-point correlation function arises in this setup.



rate research

Read More

115 - Andrea Manenti 2019
We present a systematic method to expand in components four dimensional superconformal multiplets. The results cover all possible $mathcal{N} = 1$ multiplets and some cases of interest for $mathcal{N} = 2$. As an application of the formalism we prove that certain $mathcal{N} = 2$ spinning chiral operators (also known as exotic chiral primaries) do not admit a consistent three-point function with the stress tensor and therefore cannot be present in any local SCFT. This extends a previous proof in the literature which only applies to certain classes of theories. To each superdescendant we associate a superconformally covariant differential operator, which can then be applied to any correlator in superspace. In the case of three-point functions, we introduce a convenient representation of the differential operators that considerably simplifies their action. As a consequence it is possible to efficiently obtain the linear relations between the OPE coefficients of the operators in the same superconformal multiplet and in turn streamline the computation of superconformal blocks. We also introduce a Mathematica package to work with four dimensional superspace.
When a quantum field theory possesses topological excitations in a phase with spontaneously broken symmetry, these are created by operators which are non-local with respect to the order parameter. Due to non-locality, such disorder operators have non-trivial correlation functions even in free massive theories. In two dimensions, these correlators can be expressed exactly in terms of solutions of non-linear differential equations. The correlation functions of the one-parameter family of non-local operators in the free charged bosonic and fermionic models are the inverse of each other. We point out a simple derivation of this correspondence within the form factor approach
We consider operators in N=4 SYM theory which are dual, at strong coupling, to classical strings rotating in S^5. Three point correlation functions of such operators factorize into a universal contribution coming from the AdS part of the string sigma model and a state-dependent S^5 contribution. Consequently a similar factorization arises for the OPE coefficients. In this paper we evaluate the AdS universal factor of the OPE coefficients which is explicitly expressed just in terms of the anomalous dimensions of the three operators.
The two-dimensional ghost systems with negative integral central charge received much attention in the last years for their role in a number of applications and in connection with logarithmic conformal field theory. We consider the free massive bosonic and fermionic ghost systems and concentrate on the non-trivial sectors containing the disorder operators. A unified analysis of the correlation functions of such operators can be performed for ghosts and ordinary complex bosons and fermions. It turns out that these correlators depend only on the statistics although the scaling dimensions of the disorder operators change when going from the ordinary to the ghost case. As known from the study of the ordinary case, the bosonic and fermionic correlation functions are the inverse of each other and are exactly expressible through the solution of a non-linear differential equation.
Quantum devices may overcome limitations of classical computers in studies of nuclear structure functions and parton Wigner distributions of protons and nuclei. In this talk, we discuss a worldline approach to compute nuclear structure functions in the high energy Regge limit of QCD using a hybrid quantum computer, by expressing the fermion determinant in the QCD path integral as a quantum mechanical path integral over $0+1$-dimensional fermionic and bosonic world-lines in background gauge fields. Our simplest example of computing the well-known dipole model result for the structure function $F_2$ in the high energy Regge limit is feasible with NISQ era technology using few qubits and shallow circuits. This example can be scaled up in complexity and extended in scope to compute structure functions, scattering amplitudes and other real-time correlation functions in QCD, relevant for example to describe non-equilibrium transport of quarks and gluons in a Quark-Gluon-Plasma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا