No Arabic abstract
Quantum devices may overcome limitations of classical computers in studies of nuclear structure functions and parton Wigner distributions of protons and nuclei. In this talk, we discuss a worldline approach to compute nuclear structure functions in the high energy Regge limit of QCD using a hybrid quantum computer, by expressing the fermion determinant in the QCD path integral as a quantum mechanical path integral over $0+1$-dimensional fermionic and bosonic world-lines in background gauge fields. Our simplest example of computing the well-known dipole model result for the structure function $F_2$ in the high energy Regge limit is feasible with NISQ era technology using few qubits and shallow circuits. This example can be scaled up in complexity and extended in scope to compute structure functions, scattering amplitudes and other real-time correlation functions in QCD, relevant for example to describe non-equilibrium transport of quarks and gluons in a Quark-Gluon-Plasma.
We outline a strategy to compute deeply inelastic scattering structure functions using a hybrid quantum computer. Our approach takes advantage of the representation of the fermion determinant in the QCD path integral as a quantum mechanical path integral over 0+1-dimensional fermionic and bosonic worldlines. The proper time evolution of these worldlines can be determined on a quantum computer. While extremely challenging in general, the problem simplifies in the Regge limit of QCD, where the interaction of the worldlines with gauge fields is strongly localized in proper time and the corresponding quantum circuits can be written down. As a first application, we employ the Color Glass Condensate effective theory to construct the quantum algorithm for a simple dipole model of the $F_2$ structure function. We outline further how this computation scales up in complexity and extends in scope to other real-time correlation functions.
Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally-measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here we review recent progress in the field with the development of methods including Centroid Molecular Dynamics (CMD), Ring Polymer Molecular Dynamics (RPMD) and Thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from `Matsubara dynamics, a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also rederive t->0+ quantum transition-state theory (QTST) in the Matsubara dynamics formalism showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.
Instanton is known to exist in Euclidean spacetime only. Their role in real time dynamics is usually understood as tunneling effect by Wick rotation. We illustrate other effects of instanton in holography by investigating 5d effective gravity theory of the black D3-brane-D-instanton system. The supergravity description of the D3-brane-D-instanton system is dual to the super Yang-Mills theory with topological excitations of the vacuum. We obtain Euclidean correlators in the presence of instantons by analyzing of the fluctuations of the bulk fields in the 5d effective theory. Furthermore, analytic continuation of Euclidean correlators leads to retarded correlators, which characterize real time dynamics. We find interestingly real time fluctuations of topological charge can destroy instantons and the lifetime of instanton is set by temperature. This implies instanton contribution to real time dynamics is suppressed at high temperature, which is analogous to classic field theory results that instanton contribution to thermodynamics is suppressed at high temperature.
The problem of calculating real-time correlation functions is formulated in terms of an imaginary-time partial differential equation. The latter is solved analytically for the perturbed harmonic oscillator and compared with the known exact result. The first order approximation for the short-time propagator is derived and used for numerical solution of the equation by a Monte Carlo integration. In general, the method provides a reformulation of the dynamic sign problem, and is applicable to any two-time correlation function including single-particle, density-density, current-current, spin-spin, and others. The prospects of extending the technique onto multi-dimensional problems are discussed.
We employ the functional renormalization group approach formulated on the Schwinger-Keldysh contour to calculate real-time correlation functions in scalar field theories. We provide a detailed description of the formalism, discuss suitable truncation schemes for real-time calculations as well as the numerical procedure to self-consistently solve the flow equations for the spectral function. Subsequently, we discuss the relations to other perturbative and non-perturbative approaches to calculate spectral functions, and present a detailed comparison and benchmark in $d=0+1$ dimensions.