Do you want to publish a course? Click here

Differential operators for superconformal correlation functions

116   0   0.0 ( 0 )
 Added by Andrea Manenti
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We present a systematic method to expand in components four dimensional superconformal multiplets. The results cover all possible $mathcal{N} = 1$ multiplets and some cases of interest for $mathcal{N} = 2$. As an application of the formalism we prove that certain $mathcal{N} = 2$ spinning chiral operators (also known as exotic chiral primaries) do not admit a consistent three-point function with the stress tensor and therefore cannot be present in any local SCFT. This extends a previous proof in the literature which only applies to certain classes of theories. To each superdescendant we associate a superconformally covariant differential operator, which can then be applied to any correlator in superspace. In the case of three-point functions, we introduce a convenient representation of the differential operators that considerably simplifies their action. As a consequence it is possible to efficiently obtain the linear relations between the OPE coefficients of the operators in the same superconformal multiplet and in turn streamline the computation of superconformal blocks. We also introduce a Mathematica package to work with four dimensional superspace.



rate research

Read More

In this paper we study the four-point correlation function of the energy-momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang-Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.
We compute correlation functions of chiral primary operators in N=2 superconformal theories at large N using a construction based on supersymmetric localization recently developed by Gerchkovitz et al. We focus on N=4 SYM as well as on superconformal QCD. In the case of N=4 we recover the free field theory results as expected due to non-renormalization theorems. In the case of superconformal QCD we study the planar expansion in the large N limit. The final correlators admit a simple generalization to a finite N formula which exactly matches the various small $N$ results in the literature.
Using supersymmetric localization, we consider four-dimensional $mathcal{N}=2$ superconformal quiver gauge theories obtained from $mathbb{Z}_n$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory in the large $N$ limit at weak coupling. In particular, we show that: 1) The partition function for arbitrary couplings can be constructed in terms of universal building blocks. 2) It can be computed in perturbation series, which converges uniformly for $|lambda_I|<pi^2$, where $lambda_I$ are the t Hooft coupling of the gauge groups. 3) The perturbation series for two-point functions can be explicitly computed to arbitrary orders. There is no universal effective coupling by which one can express them in terms of correlators of the $mathcal{N}=4$ theory. 4) One can define twisted and untwisted sector operators. At the perturbative orbifold point, when all the couplings are the same, the correlators of untwisted sector operators coincide with those of $mathcal{N}=4$ Super Yang-Mills theory. In the twisted sector, we find remarkable cancellations of a certain number of planar loops, determined by the conformal dimension of the operator.
When a quantum field theory possesses topological excitations in a phase with spontaneously broken symmetry, these are created by operators which are non-local with respect to the order parameter. Due to non-locality, such disorder operators have non-trivial correlation functions even in free massive theories. In two dimensions, these correlators can be expressed exactly in terms of solutions of non-linear differential equations. The correlation functions of the one-parameter family of non-local operators in the free charged bosonic and fermionic models are the inverse of each other. We point out a simple derivation of this correspondence within the form factor approach
We consider operators in N=4 SYM theory which are dual, at strong coupling, to classical strings rotating in S^5. Three point correlation functions of such operators factorize into a universal contribution coming from the AdS part of the string sigma model and a state-dependent S^5 contribution. Consequently a similar factorization arises for the OPE coefficients. In this paper we evaluate the AdS universal factor of the OPE coefficients which is explicitly expressed just in terms of the anomalous dimensions of the three operators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا