Do you want to publish a course? Click here

An observers view of simulated galaxies: disc-to-total ratios, bars, and (pseudo-)bulges

141   0   0.0 ( 0 )
 Added by Cecilia Scannapieco
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies to study the relative importance of the main stellar components, i.e., discs, bulges, and bars, at redshift zero. The main aim of this work is to understand if estimates of the structural parameters of these components determined from kinematics (as is usually done in simulations) agree well with those obtained using a photometric bulge/disc/bar decomposition (as done in observations). To perform such a comparison, we have produced synthetic observations of the simulation outputs with the Monte-Carlo radiative transfer code SUNRISE and used the BUDDA code to make 2D photometric decompositions of the resulting images (in the i and g bands). We find that the kinematic disc-to-total ratio (D/T) estimates are systematically and significantly lower than the photometric ones. While the maximum D/T ratios obtained with the former method are of the order of 0.2, they are typically >0.4, and can be as high as 0.7, according to the latter. The photometric decomposition shows that many of the simulated galaxies have bars, with Bar/T ratios in the range 0.2-0.4, and that bulges have in all cases low Sersic indices, resembling observed pseudo-bulges instead of classical ones. Simulated discs, bulges and bars generally have similar (g-i) colours, which are in the blue tail of the distribution of observed colours. This is not due to the presence of young stars, but rather to low metallicities and poor gas content in the simulated galaxies, which makes dust extinction low. Photometric decompositions thus match the component ratios usually quoted for spiral galaxies better than kinematic decompositions, but the shift is insufficient to make the simulations consistent with observed late-type systems.



rate research

Read More

We present an analysis of the environmental dependence of bars and bulges in disc galaxies, using a volume-limited catalogue of 15810 galaxies at z<0.06 from the Sloan Digital Sky Survey with visual morphologies from the Galaxy Zoo 2 project. We find that the likelihood of having a bar, or bulge, in disc galaxies increases when the galaxies have redder (optical) colours and larger stellar masses, and observe a transition in the bar and bulge likelihoods, such that massive disc galaxies are more likely to host bars and bulges. We use galaxy clustering methods to demonstrate statistically significant environmental correlations of barred, and bulge-dominated, galaxies, from projected separations of 150 kpc/h to 3 Mpc/h. These environmental correlations appear to be independent of each other: i.e., bulge-dominated disc galaxies exhibit a significant bar-environment correlation, and barred disc galaxies show a bulge-environment correlation. We demonstrate that approximately half (50 +/- 10%) of the bar-environment correlation can be explained by the fact that more massive dark matter haloes host redder disc galaxies, which are then more likely to have bars. Likewise, we show that the environmental dependence of stellar mass can only explain a small fraction (25 +/- 10%) of the bar-environment correlation. Therefore, a significant fraction of our observed environmental dependence of barred galaxies is not due to colour or stellar mass dependences, and hence could be due to another galaxy property. Finally, by analyzing the projected clustering of barred and unbarred disc galaxies with halo occupation models, we argue that barred galaxies are in slightly higher-mass haloes than unbarred ones, and some of them (approximately 25%) are satellite galaxies in groups. We also discuss implications about the effects of minor mergers and interactions on bar formation.
648 - A. Rahimi 2009
We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside of the bulge are accreted into it early in its formation within 3 Gyrs so that these stars have high [alpha/Fe] as well as having a high total energy reflecting their accretion to the centre of the galaxy. Therefore, higher total energy is a good indicator for finding accreted stars. The bulges of the simulated galaxies formed through multiple mergers separated by about a Gyr. Since [alpha/Fe] is sensitive to the first few Gyrs of star formation history, stars that formed during mergers at different epochs show different [alpha/Fe]. We show that the [Mg/Fe] against star formation time relation can be very useful to identify a multiple merger bulge formation scenario, provided there is sufficiently good age information available. Our simulations also show that stars formed during one of the merger events retain a systematically prograde rotation at the final time. This demonstrates that the orbit of the ancient merger that helped to form the bulge could still remain in the kinematics of bulge stars.
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main components of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{rm flat}$ < 222 km/s where V$_{rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.
In a framework where galaxies mostly migrate on the colour-magnitude diagram from star-forming to quiescent, the green valley is considered a transitional galaxy stage. The details of the processes that drive galaxies from star-forming to passive systems still remain unknown. We developed a method that estimates empirically the star formation quenching times-scales of green valley galaxies, assuming an exponential decay model of the SFH and through a combination of narrow and broad bands from J-PLUS and GALEX. We correlate these quenching time-scales with the presence of bars. We find that the J-PLUS colours F0395-g and F0415-g are sensitive to different SFH, showing, a clear correlation with the Dn(4000) and H-delta,A spectral indices. We find that quenching time-scales obtained with our new approach are in agreement with those determined using spectral indices. We also find that galaxies with high bar probability tend to quench their star formation slowly. We conclude that: 1) J-PLUS filters can be used to measure quenching timescales in nearby green valley galaxies; and 2) the resulting star formation quenching time-scales are longer for barred green valley galaxies. Considering that the presence of a bar indicates that more violent processes (e.g., major mergers) are absent in host galaxies, we conclude that the presence of a bar can be used as a morphological signature for slow star formation quenching.
114 - Ariel Keselman , Adi Nusser 2012
It is widely accepted that within the framework of LCDM a significant fraction of giant-disk galaxies has recently experienced a violent galactic merger. We present numerical simulations of such major mergers of gas-rich pure disk galaxies, and focus on the innermost stellar component (bulge) of the disk remnants. The simulations have high spatial and mass resolutions, and resolve regions deep enough to allow bulge classification according to standard kinematical and structural characteristics. In agreement with recent studies we find that these bulges are dominated by stars formed in the final coalescence process. In contrast to the common interpretation of such components as classical bulges (i.e. similar to intermediate luminosity ellipticals), we find they are supported by highly coherent rotations and have Sersic indices n<2, a result leading to their classification as pseudo-bulges. Pseudo-bulge formation by gas rich major mergers of pure disks is a novel mode of pseudo-bulge formation; It complements pseudo-bulge growth by secular evolution, and it could help explain the high fractions of classically bulge-less giant disk galaxies, and pseudo-bulges found in giant Sc galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا