Do you want to publish a course? Click here

Galaxy Zoo: The Environmental Dependence of Bars and Bulges in Disc Galaxies

155   0   0.0 ( 0 )
 Added by Ramin Skibba
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the environmental dependence of bars and bulges in disc galaxies, using a volume-limited catalogue of 15810 galaxies at z<0.06 from the Sloan Digital Sky Survey with visual morphologies from the Galaxy Zoo 2 project. We find that the likelihood of having a bar, or bulge, in disc galaxies increases when the galaxies have redder (optical) colours and larger stellar masses, and observe a transition in the bar and bulge likelihoods, such that massive disc galaxies are more likely to host bars and bulges. We use galaxy clustering methods to demonstrate statistically significant environmental correlations of barred, and bulge-dominated, galaxies, from projected separations of 150 kpc/h to 3 Mpc/h. These environmental correlations appear to be independent of each other: i.e., bulge-dominated disc galaxies exhibit a significant bar-environment correlation, and barred disc galaxies show a bulge-environment correlation. We demonstrate that approximately half (50 +/- 10%) of the bar-environment correlation can be explained by the fact that more massive dark matter haloes host redder disc galaxies, which are then more likely to have bars. Likewise, we show that the environmental dependence of stellar mass can only explain a small fraction (25 +/- 10%) of the bar-environment correlation. Therefore, a significant fraction of our observed environmental dependence of barred galaxies is not due to colour or stellar mass dependences, and hence could be due to another galaxy property. Finally, by analyzing the projected clustering of barred and unbarred disc galaxies with halo occupation models, we argue that barred galaxies are in slightly higher-mass haloes than unbarred ones, and some of them (approximately 25%) are satellite galaxies in groups. We also discuss implications about the effects of minor mergers and interactions on bar formation.



rate research

Read More

We use multi-wavelength SDSS images and Galaxy Zoo morphologies to identify a sample of $sim$$270$ late-type galaxies with an off-centre bar. We measure offsets in the range 0.2-2.5 kpc between the photometric centres of the stellar disc and stellar bar. The measured offsets correlate with global asymmetries of the galaxies, with those with largest offsets showing higher lopsidedness. These findings are in good agreement with predictions from simulations of dwarf-dwarf tidal interactions producing off-centre bars. We find that the majority of galaxies with off-centre bars are of Magellanic type, with a median mass of $10^{9.6} M_{odot}$, and 91% of them having $M_{star}<3times10^{10} M_{odot}$, the characteristic mass at which galaxies start having higher central concentrations attributed to the presence of bulges. We conduct a search for companions to test the hypothesis of tidal interactions, but find that a similar fraction of galaxies with offset bars have companions within 100 kpc as galaxies with centred bars. Although this may be due to the incompleteness of the SDSS spectroscopic survey at the faint end, alternative scenarios that give rise to offset bars such as interactions with dark companions or the effect of lopsided halo potentials should be considered. Future observations are needed to confirm possible low mass companion candidates and to determine the shape of the dark matter halo, in order to find the explanation for the off-centre bars in these galaxies.
We have used Galaxy Zoo DECaLS (GZD) to study strong and weak bars in disk galaxies. Out of the 314,000 galaxies in GZD, we created a volume-limited sample (0.01 < z < 0.05, Mr < -18.96) which contains 1,867 galaxies with reliable volunteer bar classifications in the ALFALFA footprint. In keeping with previous Galaxy Zoo surveys (such as GZ2), the morphological classifications from GZD agree well with previous morphological surveys. GZD considers galaxies to either have a strong bar (15.5%), a weak bar (28.1%) or no bar (56.4%), based on volunteer classifications on images obtained from the DECaLS survey. This places GZD in a unique position to assess differences between strong and weak bars. We find that the strong bar fraction is typically higher in quiescent galaxies than in star forming galaxies, while the weak bar fraction is similar. Moreover, we have found that strong bars facilitate the quenching process in star forming galaxies, finding higher fibre SFRs, lower gas masses and shorter depletion timescales in these galaxies compared to unbarred galaxies. However, we also found that any differences between strong and weak bars disappear when controlling for bar length. Based on this, we conclude that weak and strong bars are not fundamentally different phenomena. Instead, we propose that there is a continuum of bar types, which varies from weakest to strongest.
157 - Karen L. Masters 2012
We study the observed correlation between atomic gas content and the likelihood of hosting a large scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo project and information on the galaxies HI content from the ALFALFA blind HI survey. Our main result is that the bar fraction is significantly lower among gas rich disc galaxies than gas poor ones. This is not explained by known trends for more massive (stellar) and redder disc galaxies to host more bars and have lower gas fractions: we still see at fixed stellar mass a residual correlation between gas content and bar fraction. We discuss three possible causal explanations: (1) bars in disc galaxies cause atomic gas to be used up more quickly, (2) increasing the atomic gas content in a disc galaxy inhibits bar formation, and (3) bar fraction and gas content are both driven by correlation with environmental effects (e.g. tidal triggering of bars, combined with strangulation removing gas). All three explanations are consistent with the observed correlations. In addition our observations suggest bars may reduce or halt star formation in the outer parts of discs by holding back the infall of external gas beyond bar co-rotation, reddening the global colours of barred disc galaxies. This suggests that secular evolution driven by the exchange of angular momentum between stars in the bar, and gas in the disc, acts as a feedback mechanism to regulate star formation in intermediate mass disc galaxies.
We use cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies to study the relative importance of the main stellar components, i.e., discs, bulges, and bars, at redshift zero. The main aim of this work is to understand if estimates of the structural parameters of these components determined from kinematics (as is usually done in simulations) agree well with those obtained using a photometric bulge/disc/bar decomposition (as done in observations). To perform such a comparison, we have produced synthetic observations of the simulation outputs with the Monte-Carlo radiative transfer code SUNRISE and used the BUDDA code to make 2D photometric decompositions of the resulting images (in the i and g bands). We find that the kinematic disc-to-total ratio (D/T) estimates are systematically and significantly lower than the photometric ones. While the maximum D/T ratios obtained with the former method are of the order of 0.2, they are typically >0.4, and can be as high as 0.7, according to the latter. The photometric decomposition shows that many of the simulated galaxies have bars, with Bar/T ratios in the range 0.2-0.4, and that bulges have in all cases low Sersic indices, resembling observed pseudo-bulges instead of classical ones. Simulated discs, bulges and bars generally have similar (g-i) colours, which are in the blue tail of the distribution of observed colours. This is not due to the presence of young stars, but rather to low metallicities and poor gas content in the simulated galaxies, which makes dust extinction low. Photometric decompositions thus match the component ratios usually quoted for spiral galaxies better than kinematic decompositions, but the shift is insufficient to make the simulations consistent with observed late-type systems.
By means of high-resolution cosmological hydrodynamical simulations of Milky Way-like disc galaxies, we conduct an analysis of the associated stellar metallicity distribution functions (MDFs). After undertaking a kinematic decomposition of each simulation into spheroid and disc sub-components, we compare the predicted MDFs to those observed in the solar neighbourhood and the Galactic bulge. The effects of the star formation density threshold are visible in the star formation histories, which show a modulation in their behaviour driven by the threshold. The derived MDFs show median metallicities lower by 0.2-0.3 dex than the MDF observed locally in the disc and in the Galactic bulge. Possible reasons for this apparent discrepancy include the use of low stellar yields and/or centrally-concentrated star formation. The dispersions are larger than the one of the observed MDF; this could be due to simulated discs being kinematically hotter relative to the Milky Way. The fraction of low metallicity stars is largely overestimated, visible from the more negatively skewed MDF with respect to the observational sample. For our fiducial Milky Way analog, we study the metallicity distribution of the stars born in situ relative to those formed via accretion (from disrupted satellites), and demonstrate that this low-metallicity tail to the MDF is populated primarily by accreted stars. Enhanced supernova and stellar radiation energy feedback to the surrounding interstellar media of these pre-disrupted satellites is suggested as an important regulator of the MDF skewness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا