No Arabic abstract
We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside of the bulge are accreted into it early in its formation within 3 Gyrs so that these stars have high [alpha/Fe] as well as having a high total energy reflecting their accretion to the centre of the galaxy. Therefore, higher total energy is a good indicator for finding accreted stars. The bulges of the simulated galaxies formed through multiple mergers separated by about a Gyr. Since [alpha/Fe] is sensitive to the first few Gyrs of star formation history, stars that formed during mergers at different epochs show different [alpha/Fe]. We show that the [Mg/Fe] against star formation time relation can be very useful to identify a multiple merger bulge formation scenario, provided there is sufficiently good age information available. Our simulations also show that stars formed during one of the merger events retain a systematically prograde rotation at the final time. This demonstrates that the orbit of the ancient merger that helped to form the bulge could still remain in the kinematics of bulge stars.
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main components of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{rm flat}$ < 222 km/s where V$_{rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.
The characteristics of the stellar populations in the Galactic Bulge inform and constrain the Milky Ways formation and evolution. The metal-poor population is particularly important in light of cosmological simulations, which predict that some of the oldest stars in the Galaxy now reside in its center. The metal-poor bulge appears to consist of multiple stellar populations that require dynamical analyses to disentangle. In this work, we undertake a detailed chemodynamical study of the metal-poor stars in the inner Galaxy. Using R$sim$ 20,000 VLT/GIRAFFE spectra of 319 metal-poor (-2.55 dex$leq$[Fe/H]$leq$0.83 dex, with $overline{rm{[Fe/H]}}$=-0.84 dex) stars, we perform stellar parameter analysis and report 12 elemental abundances (C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Zn, Ba, and Ce) with precisions of $approx$0.10 dex. Based on kinematic and spatial properties, we categorise the stars into four groups, associated with the following Galactic structures: the inner bulge, the outer bulge, the halo, and the disk. We find evidence that the inner and outer bulge population is more chemically complex (i.e., higher chemical dimensionality and less correlated abundances) than the halo population. This result suggests that the older bulge population was enriched by a larger diversity of nucleosynthetic events. We also find one inner bulge star with a [Ca/Mg] ratio consistent with theoretical pair-instability supernova yields and two stars that have chemistry consistent with globular cluster stars.
We use cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies to study the relative importance of the main stellar components, i.e., discs, bulges, and bars, at redshift zero. The main aim of this work is to understand if estimates of the structural parameters of these components determined from kinematics (as is usually done in simulations) agree well with those obtained using a photometric bulge/disc/bar decomposition (as done in observations). To perform such a comparison, we have produced synthetic observations of the simulation outputs with the Monte-Carlo radiative transfer code SUNRISE and used the BUDDA code to make 2D photometric decompositions of the resulting images (in the i and g bands). We find that the kinematic disc-to-total ratio (D/T) estimates are systematically and significantly lower than the photometric ones. While the maximum D/T ratios obtained with the former method are of the order of 0.2, they are typically >0.4, and can be as high as 0.7, according to the latter. The photometric decomposition shows that many of the simulated galaxies have bars, with Bar/T ratios in the range 0.2-0.4, and that bulges have in all cases low Sersic indices, resembling observed pseudo-bulges instead of classical ones. Simulated discs, bulges and bars generally have similar (g-i) colours, which are in the blue tail of the distribution of observed colours. This is not due to the presence of young stars, but rather to low metallicities and poor gas content in the simulated galaxies, which makes dust extinction low. Photometric decompositions thus match the component ratios usually quoted for spiral galaxies better than kinematic decompositions, but the shift is insufficient to make the simulations consistent with observed late-type systems.
We investigate how the stellar and gas-phase He abundances evolve as functions of time within simulated star-forming disc galaxies with different star formation histories. We make use of a cosmological chemodynamical simulation for galaxy formation and evolution, which includes star formation, as well as energy and chemical enrichment feedback from asymptotic giant branch stars, core-collapse supernovae, and Type Ia supernovae. The predicted relations between the He mass fraction, $Y$, and the metallicity, $Z$, in the interstellar medium of our simulated disc galaxies depend on the past galaxy star formation history. In particular, $dY/dZ$ is not constant and evolves as a function of time, depending on the specific chemical element that we choose to trace $Z$; in particular, $dY/dX_{text{O}}$ and $dY/dX_{text{C}}$ increase as functions of time, whereas $dY/dX_{text{N}}$ decreases. In the gas-phase, we find negative radial gradients of $Y$, due to the inside-out growth of our simulated galaxy discs as a function of time; this gives rise to longer chemical enrichment time scales in the outer galaxy regions, where we find lower average values for $Y$ and $Z$. Finally, by means of chemical evolution models, in the galactic bulge and inner disc, we predict steeper $Y$ versus age relations at high $Z$ than in the outer galaxy regions. We conclude that, for calibrating the assumed $Y$-$Z$ relation in stellar models, C, N, and C+N are better proxies for the metallicity than O, because they show steeper and less scattered relations.
We investigated the typical environment and physical properties of red discs and blue bulges, comparing those to the normal objects in the blue cloud and red sequence. Our sample is composed of cluster members and field galaxies at $z le 0.1$, so that we can assess the impact of the local and global environment. We find that disc galaxies display a strong dependence on environment, becoming redder for higher densities. This effect is more pronounced for objects within the virial radius, being also strong related to the stellar mass. We find that local and global environment affect galaxy properties, but the most effective parameter is stellar mass. We find evidence for a scenario where blue discs are transformed into red discs as they grow in mass and move to the inner parts of clusters. From the metallicity differences of red and blue discs, and the analysis of their star formation histories, we suggest the quenching process is slow. We estimate a quenching time scale of $sim $ 2$-$3 Gyr. We also find from the sSFR$-$M$_*$ plane that red discs gradually change as they move into clusters. The blue bulges have many similar properties than blue discs, but some of the former show strong signs of asymmetry. The high asymmetry blue bulges display enhanced recent star formation compared to their regular counterparts. That indicates some of these systems may have increased their star formation due to mergers. Nonetheless, there may not be a single evolutionary path for these blue early-type objects.