We give an algorithm that finds a sequence of approximations with Dirichlet coefficients bounded by a constant only depending on the dimension. The algorithm uses the LLL-algorithm for lattice basis reduction. We present a version of the algorithm that runs in polynomial time of the input.
Assuming the Generalized Riemann Hypothesis, we design a deterministic algorithm that, given a prime p and positive integer m=o(sqrt(p)/(log p)^4), outputs an elliptic curve E over the finite field F_p for which the cardinality of E(F_p) is divisible by m. The running time of the algorithm is mp^(1/2+o(1)), and this leads to more efficient constructions of rational functions over F_p whose image is small relative to p. We also give an unconditional version of the algorithm that works for almost all primes p, and give a probabilistic algorithm with subexponential time complexity.
Given an infinite set of special divisors satisfying a mild regularity condition, we prove the existence of a Borcherds product of non-zero weight whose divisor is supported on these special divisors. We also show that every meromorphic Borcherds product is the quotient of two holomorphic ones. The proofs of both results rely on the properties of vector valued Eisenstein series for the Weil representation.
We study the distribution of extensions of a number field $k$ with fixed abelian Galois group $G$, from which a given finite set of elements of $k$ are norms. In particular, we show the existence of such extensions. Along the way, we show that the Hasse norm principle holds for $100%$ of $G$-extensions of $k$, when ordered by conductor. The appendix contains an alternative purely geometric proof of our existence result.
We show that the Diophantine equation given by X^3+ XYZ = Y^2+Z^2+5 has no integral solution. As a consequence, we show that the family of elliptic curve given by the Weierstrass equations Y^2-kXY = X^3 - (k^2+5) has no integral point.
Let $v$ be an odd real polynomial (i.e. a polynomial of the form $sum_{j=1}^ell a_jx^{2j-1}$). We utilize sets of iterated differences to establish new results about sets of the form $mathcal R(v,epsilon)={ninmathbb{N},|,|v(n)|{<epsilon}}$ where $|cdot|$ denotes the distance to the closest integer. We then apply the new diophantine results to obtain applications to ergodic theory and combinatorics. In particular, we obtain a new characterization of weakly mixing systems as well as a new variant of Furstenberg-Sarkozy theorem.