Do you want to publish a course? Click here

Fruit Diophantine Equation

70   0   0.0 ( 0 )
 Added by Dipramit Majumdar
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We show that the Diophantine equation given by X^3+ XYZ = Y^2+Z^2+5 has no integral solution. As a consequence, we show that the family of elliptic curve given by the Weierstrass equations Y^2-kXY = X^3 - (k^2+5) has no integral point.



rate research

Read More

Let $f(x)=x^{2}(x^{2}-1)(x^{2}-2)(x^{2}-3).$ We prove that the Diophantine equation $ f(x)=2f(y)$ has no solutions in positive integers $x$ and $y$, except $(x, y)=(1, 1)$.
We show that the diophantine equation $n^ell+(n+1)^ell + ...+ (n+k)^ell=(n+k+1)^ell+ ...+ (n+2k)^ell$ has no solutions in positive integers $k,n ge 1$ for all $ell ge 3$.
In 2012, T. Miyazaki and A. Togb{e} gave all of the solutions of the Diophantine equations $(2am-1)^x+(2m)^y=(2am+1)^z$ and $b^x+2^y=(b+2)^z$ in positive integers $x,y,z,$ $a>1$ and $bge 5$ odd. In this paper, we propose a similar problem (which we call the shuffle variant of a Diophantine equation of Miyazaki and Togb{e}). Here we first prove that the Diophantine equation $(2am+1)^x+(2m)^y=(2am-1)^z$ has only the solutions $(a, m, x, y, z)=(2, 1, 2, 1, 3)$ and $(2,1,1,2,2)$ in positive integers $a>1,m,x,y,z$. Then using this result, we show that the Diophantine equation $b^x+2^y=(b-2)^z$ has only the solutions $(b,x, y, z)=(5, 2, 1, 3)$ and $(5,1,2,2)$ in positive integers $x,y,z$ and $b$ odd.
Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z}, ngeq 2, xyz eq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the proofs are Bakers theory and Bilu-Hanrot-Voutiers result on primitive divisors of Lucas numbers.
Diophantine approximation is traditionally the study of how well real numbers are approximated by rationals. We propose a model for studying Diophantine approximation in an arbitrary totally bounded metric space where the rationals are replaced with a countable hierarchy of `well-spread points, which we refer to as abstract rationals. We prove various Jarnik-Besicovitch type dimension bounds and investigate their sharpness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا